scholarly journals Dynamic Performance of Simply Supported Rigid-Plastic Square Plates Subject to Localized Blast Loading

2019 ◽  
Vol 145 (1) ◽  
pp. 04018127
Author(s):  
N. Mehreganian ◽  
A. S. Fallah ◽  
L. A. Louca
1968 ◽  
Vol 35 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Norman Jones

It is clear from a survey of literature on the dynamic deformation of rigid-plastic plates that most work has been focused on plates in which either membrane forces or bending moments alone are considered important, while the combined effect of membrane forces and bending moments on the behavior of plates under static loads and beams under dynamic loads is fairly well established. This paper, therefore, is concerned with the behavior of circular plates loaded dynamically and with deflections in the range where both bending moments and membrane forces are important. A general theoretical procedure is developed from the equations for large deflections of plates and a simplified yield condition due to Hodge. The results obtained when solving the governing equations for the particular case of a simply supported circular plate loaded with a uniform impulsive velocity are found to compare favorably with the corresponding experimental values recorded by Florence.


2020 ◽  
pp. 136943322097944
Author(s):  
Sujing Yuan ◽  
Hong Hao ◽  
Zhouhong Zong ◽  
Jun Li

Blast load and its effects on transportation infrastructure especially bridge structures have received considerable attention in recent years. The RC bridge columns are considered as the most critical structural members because their failure leads to collapse of the bridge. Although RC bridge columns are typical axial load-carrying components, the studies on blast-resistant capacity of RC bridge columns usually neglect the axial load effect since it is commonly assumed that neglecting the axial load leads to conservative predictions of column responses. This assumption is true when column failure is governed by flexural response since axial compressive load generates a prestress in column which compensates concrete tensile stress induced by bending response. When subjected to blast loads, column response however could be governed by shear response. In this case neglecting axial loading effect does not necessarily lead to conservative predictions of column responses. In this study, high-fidelity finite element (FE) models for both non-contact explosion and contact explosion were developed in LS-DYNA. The FE models were validated with field blast test data. Subsequently, intensive simulations of the RC bridge columns with and without axial load subjected to a wider range of blast loading scenarios, including far-field, near-field and contact explosion were conducted. The influence of axial load on the dynamic performance of RC bridge columns corresponding to different blast loading scenarios was discussed.


1968 ◽  
Vol 35 (4) ◽  
pp. 803-809 ◽  
Author(s):  
J. B. Martin ◽  
L. S.-S. Lee

A unified method of approximating the response of rigid-plastic and elastic, perfectly plastic beams subjected to impulsive loading is described. The method is based on the uniqueness proof for such problems. A simply supported beam subjected to a uniform impulse is given as an illustrative example.


1955 ◽  
Vol 22 (3) ◽  
pp. 375-376
Author(s):  
A. J. Wang

Abstract This paper is concerned with a simply supported circular plastic plate that is exposed to a strong blast. Equations of deformation are developed.


Sign in / Sign up

Export Citation Format

Share Document