Reflection and Transmission of a Three-Dimensional Plane qP Wave through a Layered Fluid Medium between Two Distinct Triclinic Half-Spaces

2014 ◽  
Vol 14 (2) ◽  
pp. 182-190 ◽  
Author(s):  
A. Chattopadhyay ◽  
Pato Kumari ◽  
V. K. Sharma
Author(s):  
Nguyen Thi Kieu ◽  
Pham Chi Vinh ◽  
Do Xuan Tung

In this paper, we carry out the homogenization of a very rough three-dimensional interface separating  two dissimilar generally anisotropic poroelastic solids modeled by the Biot theory. The very rough interface is assumed to be a cylindrical surface that rapidly oscillates between two parallel planes, and the motion is time-harmonic. Using the homogenization method with the matrix formulation of the poroelasicity theory, the explicit  homogenized equations have been derived. Since the obtained  homogenized equations are totally explicit, they are very convenient for solving various practical problems. As an example proving this, the reflection and transmission of SH waves at a very rough interface of tooth-comb type is considered. The closed-form analytical expressions of the reflection and transmission coefficients have been  derived. Based on them, the effect of the incident angle and some material parameters  on the reflection and transmission coefficients are examined numerically.


2003 ◽  
Vol 9 (10) ◽  
pp. 1159-1187 ◽  
Author(s):  
A. Nandi ◽  
S. Neogy

Vibration-based diagnostic methods are used for the detection of the presence of cracks in beams and other structures. To simulate such a beam with an edge crack, it is necessary to model the beam using finite elements. Cracked beam finite elements, being one-dimensional, cannot model the stress field near the crack tip, which is not one-dimensional. The change in neutral axis is also not modeled properly by cracked beam elements. Modeling of such beams using two-dimensional plane elements is a better approximation. The best alternative would be to use three-dimensional solid finite elements. At a sufficient distance away from the crack, the stress field again becomes more or less one-dimensional. Therefore, two-dimensional plane elements or three-dimensional solid elements can be used near the crack and one-dimensional beam elements can be used away from the crack. This considerably reduces the required computational effort. In the present work, such a coupling of dissimilar elements is proposed and the required transition element is formulated. A guideline is proposed for selecting the proper dimensions of the transition element so that accurate results are obtained. Elastic deformation, natural frequency and dynamic response of beams are computed using dissimilar elements. The finite element analysis of cracked rotating shafts is complicated because of the fact that elastic deformations are superposed on the rigid-body motion (rotation about an axis). A combination of three-dimensional solid elements and beam elements in a rotating reference is proposed here to model such rotors.


2021 ◽  
Vol 381 ◽  
pp. 113011
Author(s):  
Jie Peng ◽  
Shi Shu ◽  
Junxian Wang ◽  
Liuqiang Zhong

1997 ◽  
Vol 11 (23) ◽  
pp. 2777-2790 ◽  
Author(s):  
M. Razavy

The problem of a quantum wire connected smoothly on both sides to leads of variable cross section is studied. A method for solving this problem in terms of a set of nonlinear first order matrix differential equations for the variable reflection amplitude is discussed. The reflection coefficient obtained in this way is directly related to the conductivity, and is calculated as a function of the energy of the ballistic electrons. This formulation can be applied to three-dimensional as well as two dimensional quantum wires. For two specific cases the reflection coefficient is obtained as a function of the wave number of the incident electron, and the contribution of quantum tunneling to the transmission in each case is demonstrated. Also a model with a dissipative force is introduced and its effect on the transmission of the electrons is investigated.


Sign in / Sign up

Export Citation Format

Share Document