Probabilistic Liquefaction Triggering and Manifestation Models Based on Cumulative Absolute Velocity

Author(s):  
Zach Bullock ◽  
Shideh Dashti ◽  
Abbie B. Liel ◽  
Keith A. Porter ◽  
Brett W. Maurer
2021 ◽  
Vol 11 (12) ◽  
pp. 5727
Author(s):  
Sifat Muin ◽  
Khalid M. Mosalam

Machine learning (ML)-aided structural health monitoring (SHM) can rapidly evaluate the safety and integrity of the aging infrastructure following an earthquake. The conventional damage features used in ML-based SHM methodologies face the curse of dimensionality. This paper introduces low dimensional, namely, cumulative absolute velocity (CAV)-based features, to enable the use of ML for rapid damage assessment. A computer experiment is performed to identify the appropriate features and the ML algorithm using data from a simulated single-degree-of-freedom system. A comparative analysis of five ML models (logistic regression (LR), ordinal logistic regression (OLR), artificial neural networks with 10 and 100 neurons (ANN10 and ANN100), and support vector machines (SVM)) is performed. Two test sets were used where Set-1 originated from the same distribution as the training set and Set-2 came from a different distribution. The results showed that the combination of the CAV and the relative CAV with respect to the linear response, i.e., RCAV, performed the best among the different feature combinations. Among the ML models, OLR showed good generalization capabilities when compared to SVM and ANN models. Subsequently, OLR is successfully applied to assess the damage of two numerical multi-degree of freedom (MDOF) models and an instrumented building with CAV and RCAV as features. For the MDOF models, the damage state was identified with accuracy ranging from 84% to 97% and the damage location was identified with accuracy ranging from 93% to 97.5%. The features and the OLR models successfully captured the damage information for the instrumented structure as well. The proposed methodology is capable of ensuring rapid decision-making and improving community resiliency.


Author(s):  
Zach Bullock

This study proposes empirical ground motion models for a variety of non-spectral intensity measures and significant durations in New Zealand. Equations are presented for the prediction of the median and maximum rotated components of Arias intensity, cumulative absolute velocity, cumulative absolute velocity above a 5 cm/s2 acceleration threshold, peak incremental ground velocity, and the 5% to 75% and 5% to 95% significant durations. Recent research has highlighted the usefulness of these parameters in both structural and geotechnical engineering. The New Zealand Strong Motion Database provides the database for regression and includes many earthquakes from all regions of New Zealand with the exceptions of Auckland and Northland, Otago and Southland, and Taranaki. The functional forms for the proposed models are selected using cross validation. The possible influence of effects not typically included in ground motion models for these intensity measures is considered, such as hanging wall effects and basin depth effects, as well as altered attenuation in the Taupo Volcanic Zone. The selected functional forms include magnitude and rupture depth scaling, attenuation with distance, and shallow site effects. Finally, the spatial autocorrelation of the models’ within-event residuals is considered and recommendations are made for developing correlated maps of intensity predictions stochastically.


2012 ◽  
Vol 28 (3) ◽  
pp. 931-941 ◽  
Author(s):  
Kenneth W. Campbell ◽  
Yousef Bozorgnia

Arias intensity (AI) and cumulative absolute velocity (CAV) have been proposed as instrumental intensity measures that can incorporate the cumulative effects of ground motion duration and intensity on the response of structural and geotechnical systems. In this study, we have developed a ground motion prediction equation (GMPE) for the horizontal component of AI in order to compare its predictability to a similar GMPE for CAV. Both GMPEs were developed using the same strong motion database and functional form in order to eliminate any bias these factors might cause in the comparison. This comparison shows that AI exhibits significantly greater amplitude scaling and aleatory uncertainty than CAV. The smaller standard deviation and less sensitivity to amplitude suggests that CAV is more predictable than AI and should be considered as an alternative to AI in engineering and geotechnical applications where the latter intensity measure is traditionally used.


2014 ◽  
Vol 539 ◽  
pp. 741-746
Author(s):  
Jie Ning Xia ◽  
Zhi Gao Chen ◽  
Jun Huang ◽  
Jiang Yang ◽  
Jian Yang ◽  
...  

Characteristics of cumulative absolute velocity parameter (CAV) of Lushan earthquake is discussed and presented in this paper. Based on a brief analysis of the background information of the Lushan earthquake, the value of CAV which is calculated from the recorded data of the Lushan earthquake is compared with the commonly used value peak ground acceleration (PGA). Accordingly, the relationship between the CAV and the PGA is studied, and 3 CAV/PGA ratio charts in 3 different sub-directions are obtained. Then the linear fitting operation and the polynomial fitting operation are performed to analyze the potential discipline and characteristics thereof. The applicability of utilizing the CAV parameter in earthquake observation systems is further studied in this paper, and the CAV parameter is cooperated with the currently used value PGA to provide the work of earthquake observation and emergency response with corresponding theoretical basis.


2021 ◽  
Author(s):  
Hao-Yun Huang ◽  
Yih-Min Wu

<p>Real-time magnitude determination is one of the critical issues for earthquake early warning (EEW). Magnitude determination may have saturation situation using initial seismic signals after an earthquake occurrence. Previous studies utilized eventual cumulative absolute velocity (eCAV) to determine magnitude up to 9.0 without any saturation. However, to determine eCAV will be too late for EEW application. In order to shorten time to obtain eCAV, 4,754 strong motion records from 64 events with M<sub>L </sub>large than 5.5 in Taiwan are used to establish the relationship between eCAV and initial shaking parameters (initial CAV, initial cumulative absolute displacement, initial cumulative absolute integral displacement,  P<sub>d</sub> and  τ<sub>c</sub>) from 1 s to 20 s after P arrival. Our preliminary results show that eCAV can be estimated using initial shaking parameters. Logarithm linear correlation coefficients vary from 0.78 to 0.97 with standard deviations from 0.27 to 0.10 for time windows from 1 s to 20 s after P arrival. Eventually, we can timely estimate eCAV for magnitude determination as well as or on-site EEW purpose.</p>


Sign in / Sign up

Export Citation Format

Share Document