scholarly journals Structural Health Monitoring Using Machine Learning and Cumulative Absolute Velocity Features

2021 ◽  
Vol 11 (12) ◽  
pp. 5727
Author(s):  
Sifat Muin ◽  
Khalid M. Mosalam

Machine learning (ML)-aided structural health monitoring (SHM) can rapidly evaluate the safety and integrity of the aging infrastructure following an earthquake. The conventional damage features used in ML-based SHM methodologies face the curse of dimensionality. This paper introduces low dimensional, namely, cumulative absolute velocity (CAV)-based features, to enable the use of ML for rapid damage assessment. A computer experiment is performed to identify the appropriate features and the ML algorithm using data from a simulated single-degree-of-freedom system. A comparative analysis of five ML models (logistic regression (LR), ordinal logistic regression (OLR), artificial neural networks with 10 and 100 neurons (ANN10 and ANN100), and support vector machines (SVM)) is performed. Two test sets were used where Set-1 originated from the same distribution as the training set and Set-2 came from a different distribution. The results showed that the combination of the CAV and the relative CAV with respect to the linear response, i.e., RCAV, performed the best among the different feature combinations. Among the ML models, OLR showed good generalization capabilities when compared to SVM and ANN models. Subsequently, OLR is successfully applied to assess the damage of two numerical multi-degree of freedom (MDOF) models and an instrumented building with CAV and RCAV as features. For the MDOF models, the damage state was identified with accuracy ranging from 84% to 97% and the damage location was identified with accuracy ranging from 93% to 97.5%. The features and the OLR models successfully captured the damage information for the instrumented structure as well. The proposed methodology is capable of ensuring rapid decision-making and improving community resiliency.

Increased attentiveness on the environmental and effects of aging, deterioration and extreme events on civil infrastructure has created the need for more advanced damage detection tools and structural health monitoring (SHM). Today, these tasks are performed by signal processing, visual inspection techniques along with traditional well known impedance based health monitoring EMI technique. New research areas have been explored that improves damage detection at incipient stage and when the damage is substantial. Addressing these issues at early age prevents catastrophe situation for the safety of human lives. To improve the existing damage detection newly developed techniques in conjugation with EMI innovative new sensors, signal processing and soft computing techniques are discussed in details this paper. The advanced techniques (soft computing, signal processing, visual based, embedded IOT) are employed as a global method in prediction, to identify, locate, optimize, the damage area and deterioration. The amount and severity, multiple cracks on civil infrastructure like concrete and RC structures (beams and bridges) using above techniques along with EMI technique and use of PZT transducer. In addition to survey advanced innovative signal processing, machine learning techniques civil infrastructure connected to IOT that can make infrastructure smart and increases its efficiency that is aimed at socioeconomic, environmental and sustainable development.


2018 ◽  
Vol 18 (1) ◽  
pp. 35-48 ◽  
Author(s):  
Mehrisadat Makki Alamdari ◽  
Nguyen Lu Dang Khoa ◽  
Yang Wang ◽  
Bijan Samali ◽  
Xinqun Zhu

A large-scale cable-stayed bridge in the state of New South Wales, Australia, has been extensively instrumented with an array of accelerometer, strain gauge, and environmental sensors. The real-time continuous response of the bridge has been collected since July 2016. This study aims at condition assessment of this bridge by investigating three aspects of structural health monitoring including damage detection, damage localization, and damage severity assessment. A novel data analysis algorithm based on incremental multi-way data analysis is proposed to analyze the dynamic response of the bridge. This method applies incremental tensor analysis for data fusion and feature extraction, and further uses one-class support vector machine on this feature to detect anomalies. A total of 15 different damage scenarios were investigated; damage was physically simulated by locating stationary vehicles with different masses at various locations along the span of the bridge to change the condition of the bridge. The effect of damage on the fundamental frequency of the bridge was investigated and a maximum change of 4.4% between the intact and damage states was observed which corresponds to a small severity damage. Our extensive investigations illustrate that the proposed technique can provide reliable characterization of damage in this cable-stayed bridge in terms of detection, localization and assessment. The contribution of the work is threefold; first, an extensive structural health monitoring system was deployed on a cable-stayed bridge in operation; second, an incremental tensor analysis was proposed to analyze time series responses from multiple sensors for online damage identification; and finally, the robustness of the proposed method was validated using extensive field test data by considering various damage scenarios in the presence of environmental variabilities.


2021 ◽  
Author(s):  
Federica Zonzini ◽  
Francesca Romano ◽  
Antonio Carbone ◽  
Matteo Zauli ◽  
Luca De Marchi

Abstract Despite the outstanding improvements achieved by artificial intelligence in the Structural Health Monitoring (SHM) field, some challenges need to be coped with. Among them, the necessity to reduce the complexity of the models and the data-to-user latency time which are still affecting state-of-the-art solutions. This is due to the continuous forwarding of a huge amount of data to centralized servers, where the inference process is usually executed in a bulky manner. Conversely, the emerging field of Tiny Machine Learning (TinyML), promoted by the recent advancements by the electronic and information engineering community, made sensor-near data inference a tangible, low-cost and computationally efficient alternative. In line with this observation, this work explored the embodiment of the One Class Classifier Neural Network, i.e., a neural network architecture solving binary classification problems for vibration-based SHM scenarios, into a resource-constrained device. To this end, OCCNN has been ported on the Arduino Nano 33 BLE Sense platform and validated with experimental data from the Z24 bridge use case, reaching an average accuracy and precision of 95% and 94%, respectively.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 793 ◽  
Author(s):  
B Shanthi ◽  
Mahalakshmi N ◽  
Shobana M

Structural Health Monitoring is essential in today’s world where large amount of money and labour are involved in building a structure. There arises a need to periodically check whether the built structure is strong and flawless, also how long it will be strong and if not how much it is damaged. These information are needed so that the precautions can be made accordingly. Otherwise, it may result in disastrous accidents which may take away even human lives. There are various methods to evaluate a structure. In this paper, we apply various classification algorithms like J48, Naive Bayes and many other classifiers available, to the dataset to check on the accuracy of the prediction determined by all of these classification algorithms and ar-rive at the conclusion of the best possible classifier to say whether a structure is damaged or not.  


Author(s):  
P. Gardner ◽  
R. Fuentes ◽  
N. Dervilis ◽  
C. Mineo ◽  
S.G. Pierce ◽  
...  

While both non-destructive evaluation (NDE) and structural health monitoring (SHM) share the objective of damage detection and identification in structures, they are distinct in many respects. This paper will discuss the differences and commonalities and consider ultrasonic/guided-wave inspection as a technology at the interface of the two methodologies. It will discuss how data-based/machine learning analysis provides a powerful approach to ultrasonic NDE/SHM in terms of the available algorithms, and more generally, how different techniques can accommodate the very substantial quantities of data that are provided by modern monitoring campaigns. Several machine learning methods will be illustrated using case studies of composite structure monitoring and will consider the challenges of high-dimensional feature data available from sensing technologies like autonomous robotic ultrasonic inspection. This article is part of the theme issue ‘Advanced electromagnetic non-destructive evaluation and smart monitoring’.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 545 ◽  
Author(s):  
Xinlin Qing ◽  
Wenzhuo Li ◽  
Yishou Wang ◽  
Hu Sun

Structural health monitoring (SHM) is being widely evaluated by the aerospace industry as a method to improve the safety and reliability of aircraft structures and also reduce operational cost. Built-in sensor networks on an aircraft structure can provide crucial information regarding the condition, damage state and/or service environment of the structure. Among the various types of transducers used for SHM, piezoelectric materials are widely used because they can be employed as either actuators or sensors due to their piezoelectric effect and vice versa. This paper provides a brief overview of piezoelectric transducer-based SHM system technology developed for aircraft applications in the past two decades. The requirements for practical implementation and use of structural health monitoring systems in aircraft application are then introduced. State-of-the-art techniques for solving some practical issues, such as sensor network integration, scalability to large structures, reliability and effect of environmental conditions, robust damage detection and quantification are discussed. Development trend of SHM technology is also discussed.


Sign in / Sign up

Export Citation Format

Share Document