Effects of Coarse Aggregate Content and Salt Solution Concentration on Freeze–Thaw Damage in Concrete

2021 ◽  
Vol 33 (11) ◽  
pp. 04021318
Author(s):  
Qingmei Li ◽  
Xunxiao Li ◽  
Yuanzhang Wang ◽  
Tao Xie ◽  
Suntong Zhou
Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3339
Author(s):  
Fuyu Wang ◽  
Xingyuan Qin ◽  
Weichen Pang ◽  
Wensheng Wang

In order to ensure smooth traffic and driving safety, deicing salt or snow melting agents are usually adopted to solve the problem of traffic jams and prevent pavement surfaces from freezing. The objective of this present study is to investigate the performance deterioration evaluation of asphalt mixture under the chloride salt erosion environment. Five chloride salt solution concentrations were designed and the uniaxial static compression creep test, low-temperature IDT test, freeze-thaw splitting test, and freeze-thaw cycle test were carried out for asphalt mixtures (AC-16) soaked in chloride salt solution. Results showed that with the increase in chloride salt solution concentration, the high-temperature stability, low-temperature crack resistance, and water stability of the asphalt mixture decreases. Moreover, the high-temperature stability, low-temperature crack resistance, and water stability of the asphalt mixture show a decreasing trend under different chloride salt solution concentrations following the negative cubic polynomial function. Based on the viscoelastic analysis, chloride salt solution could reduce the ability of the asphalt mixture to resist instantaneous elastic deformation and permanent deformation, and this influence will become more obvious with the increase in chloride salt solution concentration. In addition, the salt freeze-thaw cycle test indicated that in the early stage of freeze-thaw cycles, the splitting tensile strength of the asphalt mixture decreases rapidly, then tends to be flat, and then decreases rapidly. This study explores the performance damage law of asphalt mixture under salt corrosion, and the analysis results of this study could provide some references for the chloride salt dosage in the snow melting project while spreading deicing salt.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3089
Author(s):  
Peilei Zhou ◽  
Wensheng Wang ◽  
Lili Zhu ◽  
Haoyun Wang ◽  
Yongming Ai

This study aims to investigate the performance evolution and mechanism of asphalt under action of chloride salt erosion. Asphalt samples soaked with five different snow melting chloride salt concentrations were taken as the research object. Then, the high-temperature performance, low-temperature performance, temperature sensitivity and asphalt–aggregate adhesion property of asphalt samples were carried out. Additionally, Fourier transform infrared spectroscopy (FTIR) was used to explore the mechanism of chloride salt erosion on asphalt. Test results showed the linear variation relationships of high-temperature performance, low-temperature performance and temperature sensitivity with chloride salt concentrations. The high-temperature performance of asphalt would be improved by chloride snowmelt salt. With the increase in the chloride salt solution concentration, the low-temperature performance of asphalt became worse, and the temperature sensitivity increased. Moreover, after the effect of the chloride salt solution, the asphalt–aggregate adhesion property decreased with the increase in the chloride salt solution concentration. It is necessary to control the amount of chloride snowmelt salt in the actual snow removal projects. Finally, based on Fourier transform infrared spectroscopy, the mechanism of chloride salt erosion on asphalt was preliminarily explored. With the increase in the chloride salt solution concentration, the proportion of light components (saturated fraction, aromatic fraction) in asphalt decreased, and the proportion of heavy components (resin and asphaltene) with good thermal stability increased.


Author(s):  
Shi Hu ◽  
Huaming Tang ◽  
Shenyao Han

AbstractIn this paper, polyvinyl chloride (PVC) coarse aggregate with different mixing contents is used to solve the problems of plastic pollution, low energy absorption capacity and poor damage integrity, which provides an important reference for PVC plastic concrete used in the initial support structures of highway tunnels and coal mine roadway. At the same time, the energy absorption characteristics and their relationship under different impact loads are studied, which provides an important reference for predicting the energy absorption characteristics of concrete under other PVC aggregate content or higher impact speed. This study replaced natural coarse aggregate in concrete with different contents and equal volume of well-graded flaky PVC particles obtained by crushing PVC soft board. Also, slump, compression, and splitting strength tests, a free falling low-speed impact test of steel balls and a high-speed impact compression test of split Hopkinson pressure bar (SHPB) were carried out. Results demonstrate that the static and dynamic compressive strength decreases substantially, and the elastic modulus and slump decrease slowly with the increase of the mixing amount of PVC aggregate (0–30%). However, the energy absorption rate under low-speed impact and the specific energy absorption per MPa under high-speed impact increase obviously, indicating that the energy absorption capacity is significantly enhanced. Regardless of the mixing amount of PVC aggregate, greater strain rate can significantly enhance the dynamic compressive strength and the specific energy absorption per MPa. After the uniaxial compression test or the SHPB impact test, the relative integrity of the specimen is positively correlated with the mixing amount of PVC aggregate. In addition, the specimens are seriously damaged with the increase of the impact strain rate. When the PVC aggregate content is 20%, the compressive strength and splitting strength of concrete are 33.8 MPa and 3.26 MPa, respectively, the slump is 165 mm, the energy absorption rate under low-speed impact is 89.5%, the dynamic compressive strength under 0.65 Mpa impact air pressure is 58.77 mpa, and the specific energy absorption value per MPa is 13.33, which meets the requirements of shotcrete used in tunnel, roadway support and other impact loads. There is a linear relationship between the energy absorption characteristics under low-speed impact and high-speed impact. The greater the impact pressure, the larger the slope of the fitting straight line. The slope and intercept of the fitting line also show a good linear relationship with the increase of impact pressure. The conclusions can be used to predict the energy absorption characteristics under different PVC aggregate content or higher-speed impact pressure, which can provide important reference for safer, more economical, and environmental protection engineering structure design.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 805 ◽  
Author(s):  
Zhongqiang Zhang ◽  
Fujian Zhang ◽  
Zhen Liu ◽  
Guanggui Cheng ◽  
Xiaodong Wang ◽  
...  

In this study, the reverse osmosis (RO) of a salt solution was investigated using a molecular dynamics method to explore the performance of a multilayer porous graphene membrane. The effects of the salt solution concentration, pressure, layer separation and pore offset on the RO performance of the membrane were investigated and the influences of the number of layers and the gradient structure were determined. The results show that as the salt solution concentration increases, the energy barrier of the water molecules passing through the bilayer porous graphene membranes changes slightly, indicating that the effect of the water flux on the membrane can be ignored. The salt rejection performance of the membrane improves with an increase in the concentration of the salt solution. When the pressure is increased, the energy barrier decreases, the water flux increases and the salt rejection decreases. When the layer separation of the bilayer porous graphene membrane is the same as the equilibrium spacing of the graphene membrane, the energy barrier is the lowest and the membrane water flux is the largest. The energy barrier of the bilayer porous graphene membrane increases with increasing layer separation, resulting in a decrease in the water flux of the membrane. The salt rejection increases with increasing layer separation. The water flux of the membrane decreases as the energy barrier increases with increasing pore offset and the salt rejection increases. The energy barrier effect is more pronounced for a larger number of graphene layers and the water flux of the membrane decreases because it is more difficult for the water molecules to pass through the porous graphene membrane. However, the salt rejection performance improves with the increase in the number of layers. The gradient pore structure enhances the energy barrier effect of the water molecules permeating through the membrane and the water flux of the membrane decreases. The salt rejection performance is improved by the gradient pore structure. The research results provide theoretical guidance for research on the RO performance of porous graphene membranes and the design of porous graphene membranes.


2021 ◽  
Vol 28 (1) ◽  
pp. 516-527
Author(s):  
Jiangwei Bian ◽  
Wenbing Zhang ◽  
Zhenzhong Shen ◽  
Song Li ◽  
Zhanglan Chen

Abstract The most significant difference between recycled and natural concretes lies in aggregates. The performance of recycled coarse aggregates directly affects the characteristics of recycled concrete. Therefore, an in-depth study of aggregate characteristics is of great significance for improving the quality of recycled concrete. Based on the coarse aggregate content, maximum aggregate size, and aggregate shape, this study uses experiments, theoretical analysis, and numerical simulation to reveal the impact of aggregate characteristics on the mechanical properties of recycled concrete. In this study, we selected the coarse aggregate content, maximum aggregate size, and the aggregate shape as design variables to establish the regression equations of the peak stress and elastic modulus of recycled concrete using the response surface methodology. The results showed that the peak stress and elastic modulus of recycled concrete reach the best when the coarse aggregate content is 45%, the maximum coarse aggregate size is 16 mm, and the regular round coarse aggregates occupy 75%. Such results provide a theoretical basis for the resource utilization and engineering design of recycled aggregates.


Sign in / Sign up

Export Citation Format

Share Document