Effect of Secondary Cooling Rate in Corrosion Performance of Line Pipe Material in Sour Service Applications

2021 ◽  
Vol 12 (2) ◽  
pp. 06021001
Author(s):  
Ali Kalaki ◽  
Mehdi Eskandarzade ◽  
Asgar Minaei ◽  
R. M. Chandima Ratnayake
Author(s):  
B. D. Newbury ◽  
D. P. Fairchild ◽  
C. A. Prescott ◽  
T. D. Anderson ◽  
A. J. Wasson

Abstract C-Mn steels are extensively used as line pipe material for sour service oil and gas applications, i.e. in the presence of hydrogen sulfide (H2S), because of their ease of fabrication, weldability and significantly lower cost compared to Corrosion Resistant Alloys (CRAs). However, use of C-Mn steel in sour conditions can be limited by its susceptibility to various hydrogen damage mechanisms such as sulfide stress cracking (SSC) and hydrogen induced cracking (HIC). Presently, there are several industry standards which provide guidelines for materials selection and qualification testing to ensure the integrity of carbon steel pipelines in sour service. In recent years, examples of line pipe susceptibility to SSC have occurred due to undetected Local Hard Zones (LHZs) produced during steel plate manufacture. A companion paper (Fairchild, et al, [1]) describes historical and one newly recognized root causes for LHZs. Due to this newly recognized root cause, the adequacy of the current industry practice for specifying and qualifying C-Mn line pipe for severe sour service should be evaluated. In this work, a new approach to monitoring steel plate manufacture during Thermo Mechanical Controlled Processing (TMCP) in order to manage LHZs is explained. Results from implementing this qualification approach will be discussed. In addition, several gaps were identified in the current test methods and various potential modifications to address these gaps were identified. Based on the results of these studies, recommendations to the test methods are made to improve the robustness in the materials qualification process used for sour pipeline projects.


Author(s):  
K. Biermann ◽  
C. Kaucke ◽  
M. Probst-Hein ◽  
B. Koschlig

Offshore oil and gas production worldwide is conducted in increasingly deep waters, leading to more and more stringent demands on line pipes. Higher grades and heavier wall thicknesses in combination with deep temperature toughness properties, good weldability and suitability for sour service applications are among the characteristics called for. It is necessary that pipe manufacturers develop materials to meet these at times conflicting requirements. An alloying concept based on steel with very low carbon content is presented. This type of material provides excellent toughness properties at deep temperatures in line pipe with a wall thickness of up to 70 mm, produced by hot rolling followed by QT heat treatment. Pipes from industrial production of identical chemical composition and heat treatment achieved grades X65 to X80, depending on wall thickness. The properties of the steel used in pipes are presented. The resistance of the pipe material to the influence of sour gas was assessed by standard tests. To demonstrate weldability, test welds were performed and examined.


Author(s):  
Harpreet Sidhar ◽  
Neerav Verma ◽  
Chih-Hsiang Kuo ◽  
Michael Belota ◽  
Andrew J. Wasson

Abstract The oil and gas industry has seen unexpected failures of sour service carbon steel pipelines in the recent past. Below par performance of girth welds and line pipe material have been identified as the root causes of such failures. Although mechanized welding can achieve good consistency, the weld region is more heterogeneous as compared to base material, which can lead to inconsistencies and poor weld performance. Overall, the effects of welding parameters on performance of carbon steel pipeline girth welds for sour service are not well understood. Furthermore, industry is moving towards more challenging environments, such as production of hydrocarbons from ultra-deepwater, which further necessitates the need to improve welding practices for additional high criticality applications. Many of the critical parameters for sour service performance will also improve general weld performance for ultra-deepwater. So, there is a clear need to understand the effects of various welding parameters on weld properties and performance. This effort aims at assessing the effects of key welding parameters on performance of girth welds to develop improved welding practice guidelines for sour service pipeline applications. In this study, several API X65 grade line pipe girth welds were made using commercially available welding consumables. The effects on weld root performance of preheat, wire consumable chemistry, hot pass tempering, single vs. dual torch, copper backing, root pass heat input, metal transfer mode, pipe fit-up (root gap, misalignment) were studied. Generally, carbon steel welds with hardness 250HV or below are considered acceptable for sour service. So, detailed microhardness mapping and microstructural characterization were conducted to evaluate the performance and reliability of welds. It was evident that the welding parameters studied have a significant impact on root performance. Preheat and pipe fit-up showed the most significant impact on weld root performance. Based on the results and understanding developed with this study, recommendations for industry are provided through this paper to improve reliability of pipeline girth welds in sour service application.


Author(s):  
Diana Toma ◽  
Silke Harksen ◽  
Dorothee Niklasch ◽  
Denise Mahn ◽  
Ashraf Koka

The general trend in oil and gas industry gives a clear direction towards the need for high strength grades up to X100. The exploration in extreme regions and under severe conditions, e.g. in ultra deep water regions also considering High Temperature/High Pressure Fields or arctic areas, becomes more and more important with respect to the still growing demand of the world for natural resources. Further, the application of high strength materials enables the possibility of structure weight reduction which benefits to materials and cost reduction and increase of efficiency in the pipe line installation process. To address these topics, the development of such high strength steel grades with optimum combination of high tensile properties, excellent toughness properties and sour service resistivity for seamless quenched and tempered pipes are in the focus of the materials development and improvement of Vallourec. This paper will present the efforts put into the materials development for line pipe applications up to grade X100 for seamless pipes manufactured by Pilger Mill. The steel concept developed by Vallourec over the last years [1,2] was modified and adapted according to the technical requirements of the Pilger rolling process. Pipes with OD≥20″ and wall thickness up to 30 mm were rolled and subsequent quenched and tempered. The supportive application of thermodynamic and kinetic simulation techniques as additional tool for the material development was used. Results of mechanical characterization by tensile and toughness testing, as well as microstructure examination by light-optical microscopy will be shown. Advanced investigation techniques as scanning electron microcopy and electron backscatter diffraction are applied to characterize the pipe material up to the crystallographic level. The presented results will demonstrate not only the effect of a well-balanced alloying concept appointing micro-alloying, but also the high sophisticated and precise thermal treatment of these pipe products. The presented alloying concept enables the production grade X90 to X100 with wall thickness up to 30 mm and is further extending the product portfolio of Vallourec for riser systems for deepwater and ultra-deep water application [1, 3, 4].


1996 ◽  
Vol 36 (Suppl) ◽  
pp. S148-S150 ◽  
Author(s):  
Yo-ichi Ito ◽  
Mamoru Suda ◽  
Yoshiei Kato ◽  
Hakaru Nakato ◽  
Ken-ichi Sorimachi

Author(s):  
Karl Christoph Meiwes ◽  
Susanne Höhler ◽  
Marion Erdelen-Peppler ◽  
Holger Brauer

During reel-laying repeated plastic strains are introduced into a pipeline which may affect strength properties and deformation capacity of the line pipe material. Conventionally the effect on the material is simulated by small-scale reeling simulation tests. For these, coupons are extracted from pipes that are loaded in tension and compression and thermally aged, if required. Afterwards, specimens for mechanical testing are machined from these coupons and tested according to the corresponding standards. Today customers often demand additional full-scale reeling simulation tests to assure that the structural pipe behavior meets the strain demands as well. Realistic deformations have to be introduced into a full-size pipe, followed by aging, sampling and mechanical testing comparable to small-scale reeling. In this report the fitness for use of a four-point-bending test rig for full-scale reeling simulation tests is demonstrated. Two high-frequency-induction (HFI) welded pipes of grade X65M (OD = 323.9 mm, WT = 15.9 mm) from Salzgitter Mannesmann Line Pipe GmbH (MLP) are bent with alternate loading. To investigate the influences of thermal aging from polymer-coating process one test pipe had been heat treated beforehand, in the same manner as if being PE-coated. After the tests mechanical test samples were machined out of the plastically strained pipes. A comparison of results from mechanical testing of material exposed to small- and full-scale reeling simulation is given. The results allow an evaluation of the pipe behavior as regards reeling ability and plastic deformation capacity.


Author(s):  
D. Rudland ◽  
D.-J. Shim ◽  
G. M. Wilkowski ◽  
S. Kawaguchi ◽  
N. Hagiwara ◽  
...  

The ductile fracture resistance of newer line pipe steels is of concern for high grade/strength steels and higher-pressure pipeline designs. Although there have been several attempts to make improved ductile fracture arrest models, the model that is still used most frequently is the Battelle Two-Curve Method (TCM). This analysis incorporates the gas-decompression behavior with the fracture toughness of the pipe material to predict the minimum Charpy energy required for crack arrest. For this analysis, the influence of the backfill is lumped into one empirically developed “soil” coefficient which is not specific to soil type, density or strength. No attempt has been made to quantify the effects of soil depth, type, total density or strength on the fracture speeds of propagating cracks in line pipe steels. In this paper, results from small-scale and large-scale burst tests with well-controlled backfill conditions are presented and analyzed to determine the effects of soil depth and cohesiveness on the fracture speeds. Combining this data with the past full-scale burst data used in generating the original backfill coefficient provides additional insight into the effects of the soil properties on the fracture speeds and the arrest of running ductile fractures in line pipe materials.


Author(s):  
K. A. Widenmaier ◽  
A. B. Rothwell

The use of high strength, high design-factor pipe to transport natural gas requires the careful design and selection of pipeline materials. A primary material concern is the characterization and control of ductile fracture initiation and arrest. Impact toughness in the form of Charpy V-notch energies or drop-weight tear tests is usually specified in the design and purchase of line pipe in order to prevent large-scale fracture. While minimum values are prescribed in various codes, they may not offer sufficient protection in pipelines with high pressure, cold temperature, rich gas designs. The implications of the crack driving force arising from the gas decompression versus the resisting force of the pipe material and backfill are examined. The use and limitations of the Battelle two-curve method as the standard model are compared with new developments utilizing crack-tip opening angle and other techniques. The methodology and reasoning used to specify the material properties for line pipe are described and the inherent limits and risks are discussed. The applicability of Charpy energy to predict ductile arrest in high strength pipes (X80 and above) is examined.


CORROSION ◽  
1993 ◽  
Vol 49 (7) ◽  
pp. 531-535 ◽  
Author(s):  
R. W. Revie ◽  
V. S. Sastri ◽  
M. Elboujdaini ◽  
R. R. Ramsingh ◽  
Y. Lafrenière

Author(s):  
Rhett Dotson ◽  
Chris Alexander ◽  
Ashwin Iyer ◽  
Al Gourlie ◽  
Richard Kania

In this paper, a methodology is presented to develop load factors for use in elastic-plastic assessments of pipelines and their components. The load factors are based on the pipe material properties and the ASME pipeline code’s design margin for the service and location of the pipeline installation [1, 2]. These codes are recognized by 49 CFR 192 and 195 [3, 4]. Minimum required load factors for internal pressure loads can be derived analytically based on design equations from the ASME B31 piping codes and minimum material requirements for API 5L line pipe [6]. Once the load factor is established for a particular case, the elastic-plastic methodology may be used in the Finite Element Analysis (FEA) of pipelines and related components. This methodology is particularly useful in the assessment of existing systems when linear elastic numerical analysis shows that local stresses may exceed the elastic design limits. Two case studies are presented showing analyses performed with Abaqus [5], a commercial, general purpose FEA software package. The first case study provides an assessment of a large diameter elbow where the stress on the outer fibers of the intrados exceeded the longitudinal stress limits from B31.8. The second case study examines an assessment of a tee connection where the stresses on the ID exceeded the yield strength of the component. In addition to the case studies, the paper also presents the results of a full-scale test that demonstrated what margin was present when the numerical calculations were based on specified minimum properties. This paper is not intended to revise or replace any provision of B31.4 and/or B31.8 [1, 2]. Instead, it provides the means for calculating load factors that can be used with an elastic-plastic analysis approach in a manner that provides the same design margins as the ASME B31 codes. The approach described in this paper is intended for use in the detailed FEA of pipelines and their associated components.


Sign in / Sign up

Export Citation Format

Share Document