Experimental Behavior of Nonconforming RC Columns with Plain Bars under Constant Axial Load and Biaxial Bending

2013 ◽  
Vol 139 (6) ◽  
pp. 897-914 ◽  
Author(s):  
M. Di Ludovico ◽  
G. M. Verderame ◽  
A. Prota ◽  
G. Manfredi ◽  
E. Cosenza
2017 ◽  
Vol 143 (11) ◽  
pp. 04017153 ◽  
Author(s):  
Marta Del Zoppo ◽  
Marco Di Ludovico ◽  
Gerardo Mario Verderame ◽  
Andrea Prota

2000 ◽  
Vol 27 (6) ◽  
pp. 1173-1182 ◽  
Author(s):  
H P Hong

The paper describes the development of a simple theoretical approach in estimating the capacity of short reinforced concrete (RC) columns under biaxial bending and axial load. The developed approach considers the nonlinear stress-strain relations of concrete and reinforcing steel and does not make the assumption about the limiting strain of extreme compression fiber of concrete. The solution is obtained using a nonlinearly constrained optimization algorithm. The approach was used to estimate the theoretical capacities of many tested RC columns found in the literature. A probabilistic analysis of the modeling errors was carried out using the ratios of the test-to-predicted results. The probabilistic analysis was extended to include two simplified theoretical methods: the reciprocal load method given by Bresler and the failure surface method given by Hsu.Key words: biaxial bending, modeling error, optimization, probability distribution.


2014 ◽  
Vol 39 (5) ◽  
pp. 3449-3460 ◽  
Author(s):  
M. Fiaz Tahir ◽  
Qaiser-Uz-Zaman Khan ◽  
M. Rizwan ◽  
M. Ashraf ◽  
M. Yaqub

Author(s):  
Amr Elsayed Mohammed Abdallah ◽  
Ehab Fathy El-Salakawy

The mechanical and physical properties of glass fiber-reinforced polymer (GFRP) reinforcement are different from steel, which requires independent code provisions for GFRP-reinforced concrete (RC) members. The currently available code provisions for GFRP-RC members still need more research evidence to be inclusive. For example, the available provisions for confinement reinforcement of FRP-RC columns do not consider the effects of column aspect ratio, which is not yet supported by any available research data. In this study, two full-scale spirally reinforced GFRP-RC circular columns were constructed and tested under concurrent seismic and axial loads. Both specimens had an aspect ratio (shear span-to-diameter ratio) of 7.0, while other two specimens with an aspect ratio of 5.0, from a previous stage of this study, were included for comparison purposes. For each aspect ratio, each specimen was loaded under one of two levels of axial load; 20 or 30% of the axial load capacity of the column section. All test specimens had a 35 MPa concrete compressive strength, 350-mm diameter, 85-mm spiral pitch and 1.2% longitudinal reinforcement ratio. The experimental results were analyzed in terms of hysteretic response, drift capacity and inelastic deformability hinge length. Based on the experimental results, it can be concluded that the aspect ratio affects the magnitude of secondary moments and inelastic deformability hinge length. In addition, the aspect ratio may affect drift capacity of GFRP-RC columns, depending on axial load level.


Structures ◽  
2020 ◽  
Vol 28 ◽  
pp. 170-180 ◽  
Author(s):  
Rahim Ghoroubi ◽  
Ömer Mercimek ◽  
Anıl Özdemir ◽  
Özgür Anil

1996 ◽  
Vol 12 (4) ◽  
pp. 715-739 ◽  
Author(s):  
Abraham C. Lynn ◽  
Jack P. Moehle ◽  
Stephen A. Mahin ◽  
William T. Holmes

Past earthquakes have emphasized the vulnerability of reinforced concrete columns having details typical of those built before the mid-1970's. These columns are susceptible to axial-flexural, shear, and bond failures, which subsequently may lead to severe damage or collapse of the building. Research was undertaken to investigate the lateral and vertical load-resisting behavior of reinforced concrete columns typical of pre-1970's construction. Eight full-scale specimens were constructed and were loaded with constant axial load and increasing cyclic lateral displacement increments until failure. Test data are presented and compared with behavior estimated by using various evaluation methods.


Sign in / Sign up

Export Citation Format

Share Document