scholarly journals Seismic Performance of Single-Story Precast Buildings: Effect of Cladding Panels

2018 ◽  
Vol 144 (9) ◽  
pp. 04018134 ◽  
Author(s):  
Marianna Ercolino ◽  
Gennaro Magliulo ◽  
Gaetano Manfredi
2011 ◽  
Vol 15 (9) ◽  
pp. 1319-1338
Author(s):  
Liberato Ferrara ◽  
Roberto Felicetti ◽  
Giandomenico Toniolo ◽  
Carla Zenti

2022 ◽  
pp. 136943322110572
Author(s):  
Xun Chong ◽  
Pu Huo ◽  
Linlin Xie ◽  
Qing Jiang ◽  
Linbing Hou ◽  
...  

A new connection measure between the precast concrete (PC) cladding panel and PC frame structure is proposed to realize a new kind of isostatic frame-cladding system. Three full-scale PC wall-frame substructures were tested under the quasi-static load. These substructures included a bare wall-frame specimen, a specimen with a cladding panel that has no opening, and a specimen with a cladding panel that has an opening in it. The damage evolution, failure mode, load-bearing capacity, deformation capacity, and energy dissipation capacity of three specimens were compared. The results indicated that the motions of the cladding panels and the main structures were uncoupled through the relative clearance of the bottom connections, and three specimens exhibited approximately identical failure modes and seismic performance. Thus, the reliability of this new isostatic system was validated.


2016 ◽  
Vol 24 (4) ◽  
pp. 645-658 ◽  
Author(s):  
Blaz Zoubek ◽  
Matej Fischinger ◽  
Tatjana Isakovic

In the presented study, a second-line back-up system for the seismic protection of cladding panels in RC precast buildings is first presented. The system consists of special anchoring elements and a rope restrainer. The latter is activated only in the case when the existing connections between the primary structure and the panel fail, resulting in the occurrence of relatively large impact forces in the restrainer and in the anchoring elements. In order to adequately design the constitutive parts of the system, a simple yet sufficiently accurate procedure for the estimation of the impact forces is needed. A relatively easy-to-use formula was therefore proposed for this purpose. Next, an extensive parametric study, using response history analysis (RHA), was performed and the influence of several parameters affecting the impact forces in the restrainers was studied. The results obtained in the study were used to evaluate the proposed analytical formula. Considering the simplicity of the proposed formula, its accuracy was good. It can therefore be applied to the design of short restrainers which could be used in reinforced concrete (RC) precast buildings for the protection of cladding panels against the effects of earthquakes.


2014 ◽  
Vol 30 (2) ◽  
pp. 891-912 ◽  
Author(s):  
Gennaro Magliulo ◽  
Marianna Ercolino ◽  
Crescenzo Petrone ◽  
Orsola Coppola ◽  
Gaetano Manfredi

On 20 and 29 May 2012, two earthquakes of MW5.9 and MW5.8 occurred in the Emilia region of northern Italy, one of the most developed industrial centers in the country. A complete photographic report collected in the epicentral zone shows the seismic vulnerability of precast structures, the damage to which is mainly caused by connection systems. Indeed, the main recorded damage is either the loss of support of structural horizontal elements, due to the failure of friction beam-to-column and roof-to-beam connections, or the collapse of the cladding panels, due to the failure of the panel-to-structure connections. The damage can be explained by the intensity of the recorded seismic event and by the exclusion of the epicentral region from the seismic areas recognized by the Italian building code up to 2003. Simple considerations related to the recorded acceleration spectra allow motivating the extensive damage due to the loss of support.


2021 ◽  
Vol 7 ◽  
Author(s):  
Fabio Minghini ◽  
Nerio Tullini

In 2012, the North of Italy was hit by a seismic sequence characterized by two main events occurred on May 20 and 29 with MW = 6.1 and 6.0, respectively. Those earthquakes were particularly severe toward precast Reinforced Concrete (RC) structures not designed for seismic resistance. In the past years, the authors implemented a database collecting damage data and typological information on the industrial buildings struck by the Emilia earthquakes. That database was used to develop empirical fragility curves, which highlighted the considerable vulnerability of precast buildings conceived in accordance with pre-seismic code provisions. More recently, the interventions of seismic retrofitting on the same buildings, funded by the Emilia-Romagna region and designed by engineers which were directly hired by the companies, were examined in detail and critically revisited. A selection of these interventions is presented in this paper, which analyzes the effectiveness of the various retrofitting solutions, with a specific attention to the force transfer mechanisms between existing structures and strengthening systems. The interventions are divided between column strengthening (based, for example, on RC or steel jacketing) and interventions aimed at providing the building with a suitable earthquake resistant system (based, for example, on either the use of the existing cladding panels or the implementation of new bracing systems). Graphical representations of the analyzed solutions with the relevant construction details are provided.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 400
Author(s):  
Liana Ostetto ◽  
Romain Sousa ◽  
Hugo Rodrigues ◽  
Paulo Fernandes

The latest earthquakes in Europe exposed some critical problems in the connections of cladding panels in industrial precast reinforced concrete (PRC) structures. These connections did not perform as desired, causing the panels to fall, leading to significant nonstructural damage that resulted in the loss of human life and significant socio-economic impacts due to the interruption of business. Furthermore, in addition to the behavior of the cladding system itself, it is still not clear to what extent it can influence the overall seismic performance of the main structure. Making use of a simplified macroelement, the present study assesses the seismic performance of commonly employed cladding-to-structure connections, as well as the interaction of cladding panels with industrial PRC buildings. The analyses were carried out considering a PRC building representative of a Portuguese industrial park, studied with and without cladding panels. The seismic behavior of the structure was assessed considering both nonlinear static and dynamic procedures.


2020 ◽  
Vol 18 (15) ◽  
pp. 6849-6882
Author(s):  
Giovanni Menichini ◽  
Emanuele Del Monte ◽  
Maurizio Orlando ◽  
Andrea Vignoli

Abstract The interaction between cladding panels and the main structure is a crucial point to assess the seismic response, and above all the structural safety, of RC precast industrial building. In the past, connections were often designed to allow construction tolerances and to accommodate both thermal and wind-induced displacements. The lack of specific details to allow relative in-plane displacements between cladding panels and the main structure often led to the participation of cladding panels in the structure seismic-resistant system with consequent connection failures. In the last decades, a lot of experimental tests were performed to investigate the in-plane performance of panel connections, and some design recommendations have been developed accordingly. In the out-of-plane direction, the connections were often considered to be infinitely rigid and not to suffer any damage by the seismic load. This work deals with the out-of-plane response of panel-to-structure connections for vertical panels typical of industrial and commercial precast buildings. Both standard hammer-head strap and new devices, called SismoSafe, were investigated. Tests were performed in the Structures and Materials Testing Laboratory of the Department of Civil and Environmental Engineering of Florence, where a specific setup was designed to perform cyclic and monotonic tests on the connection devices. Standard connections showed a rather limited resistance, while the innovative connections exhibited a high out-of-plane resistance. Numerical analyses were also performed on a case study building to evaluate the distribution of the out-of-plane demand on the connections.


Sign in / Sign up

Export Citation Format

Share Document