scholarly journals The Emilia Earthquake: Seismic Performance of Precast Reinforced Concrete Buildings

2014 ◽  
Vol 30 (2) ◽  
pp. 891-912 ◽  
Author(s):  
Gennaro Magliulo ◽  
Marianna Ercolino ◽  
Crescenzo Petrone ◽  
Orsola Coppola ◽  
Gaetano Manfredi

On 20 and 29 May 2012, two earthquakes of MW5.9 and MW5.8 occurred in the Emilia region of northern Italy, one of the most developed industrial centers in the country. A complete photographic report collected in the epicentral zone shows the seismic vulnerability of precast structures, the damage to which is mainly caused by connection systems. Indeed, the main recorded damage is either the loss of support of structural horizontal elements, due to the failure of friction beam-to-column and roof-to-beam connections, or the collapse of the cladding panels, due to the failure of the panel-to-structure connections. The damage can be explained by the intensity of the recorded seismic event and by the exclusion of the epicentral region from the seismic areas recognized by the Italian building code up to 2003. Simple considerations related to the recorded acceleration spectra allow motivating the extensive damage due to the loss of support.

2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 199-206
Author(s):  
Bertha Olmos ◽  
José Jara ◽  
José Luis Fabián

This paper investigates the effects of the nonlinear behaviour of isolation pads on the seismic capacity of bridges to identify the parameters of base isolation systems that can be used to improve seismic performance of bridges. A parametric study was conducted by designing a set of bridges for three different soil types and varying the number of spans, span lengths, and pier heights. The seismic responses (acceleration, displacement and pier seismic forces) were evaluated for two structural models. The first model corresponded to the bridges supported on elastomeric bearings with linear elastic behaviour and the second model simulated a base isolated bridge that accounts for the nonlinear behaviour of the system. The seismic demand was represented with a group of twelve real accelerograms recorded on the subduction zone on the Pacific Coast of Mexico. The nonlinear responses under different damage scenarios for the bridges included in the presented study were estimated. These results allow determining the seismic capacity of the bridges with and without base isolation. Results show clearly the importance of considering the nonlinear behaviour on the seismic performance of bridges and the influence of base isolation on the seismic vulnerability of medium size bridges.


Author(s):  
Yong Wang ◽  
Huanjun Jiang ◽  
Chen Wu ◽  
Zihui Xu ◽  
Zhiyuan Qin

<p>Suspended ceiling systems (SCSs) experienced severe damage during strong earthquakes that occurred in recent years. The capacity of the ceiling component is a crucial factor affecting the seismic performance of SCS. Therefore, a series of static tests on suspended ceiling components under monotonic and cyclic loadings were carried out to investigate the seismic performance of the ceiling components. The ceiling components include main tee splices, cross tee latches and peripheral attachments. All specimens were tested under axial loading. Additionally, the static tests of cross tee latches subjected to shear and bending loadings were performed due to their seismic vulnerability. The failure pattern, load-carrying ability, deformation capacity and energy dissipation of the ceiling components are presented in detail in this study.</p>


2022 ◽  
pp. 136943322110572
Author(s):  
Xun Chong ◽  
Pu Huo ◽  
Linlin Xie ◽  
Qing Jiang ◽  
Linbing Hou ◽  
...  

A new connection measure between the precast concrete (PC) cladding panel and PC frame structure is proposed to realize a new kind of isostatic frame-cladding system. Three full-scale PC wall-frame substructures were tested under the quasi-static load. These substructures included a bare wall-frame specimen, a specimen with a cladding panel that has no opening, and a specimen with a cladding panel that has an opening in it. The damage evolution, failure mode, load-bearing capacity, deformation capacity, and energy dissipation capacity of three specimens were compared. The results indicated that the motions of the cladding panels and the main structures were uncoupled through the relative clearance of the bottom connections, and three specimens exhibited approximately identical failure modes and seismic performance. Thus, the reliability of this new isostatic system was validated.


2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Giuliana Alessio ◽  
Laura Alfonsi ◽  
Carlo Alberto Brunori ◽  
Pierfrancesco Burrato ◽  
Giuseppe Casula ◽  
...  

<p>On May 20, 2012, a Ml 5.9 seismic event hit the Emilia Po Plain, triggering intense earthquake activity along a broad area of the Po Plain across the provinces of Modena, Ferrara, Rovigo and Mantova (Figure 1). Nine days later, on May 29, 2012, a Ml 5.8 event occurred roughly 10 km to the SW of the first main shock. These events caused widespread damage and resulted in 26 victims. The aftershock area extended over more than 50 km and was elongated in the WNW-ESE direction, and it included five major aftershocks with 5.1 ≤Ml ≤5.3, and more than 2000 minor events (Figure 1). In general, the seismic sequence was confined to the upper 10 km of the crust. Minor seismicity with depths ranging from 10 km to 30 km extended towards the southern sector of the epicentral area (ISIDe, http://iside.rm.ingv.it/). […]</p><br />


2014 ◽  
Vol 08 (02) ◽  
pp. 1450009 ◽  
Author(s):  
Gian Paolo Cimellaro ◽  
Marco Chiriatti ◽  
Hwasung Roh ◽  
Andrei M. Reinhorn

On May 20, 2012 at 2:03 UTC, a Mw 6.1 earthquake occurred in Emilia Region of Northern Italy. The event was preceded by a Ml 4.1 foreshock on May 19, 2012 at 23:13 UTC, and followed by several aftershocks, twenty of them with a magnitude Mw greater than 4. The epicentral area of the seismic sequence covers alluvial lowland that is occupied by both agricultural and urbanized areas. Liquefaction effects were observed in several villages on the west side of Ferrara which were built upon former river beds such as the Reno River. The Emilia seismic sequence resulted in 27 casualties, several of whom were among the workers in the factories that collapsed during working hours, and there was extensive damage to monuments, public buildings, industrial sites and private homes. Almost no municipalities hit by 2012 earthquake were classified as seismic area before 2003; therefore, most of the existing structures had been designed without taking in account the seismic actions. The main aims of MCEER field mission was to document the emergency response and the most common damage mechanisms of industrial sheds during Emilia earthquake sequence which are shown and discussed in detail.


2012 ◽  
Vol 28 (1_suppl1) ◽  
pp. 385-406 ◽  
Author(s):  
Maximiliano Astroza ◽  
Ofelia Moroni ◽  
Svetlana Brzev ◽  
Jennifer Tanner

Engineered masonry, namely reinforced and confined masonry, has been widely used for housing construction in Chile over the last few decades. Most one- and two-story single-family masonry dwellings did not experience any damage due to the 27 February 2010 Maule earthquake, with the exception of a few dwellings of pre-1970 vintage, which suffered moderate damage. A similar statement can be made for three- and four-story confined masonry buildings: a large majority of buildings remained undamaged. However, several reinforced and partially confined three- and four-story masonry buildings suffered extensive damage, and two three-story partially confined buildings collapsed. The key damage patterns and the causes of damage are discussed in the paper. The extent of damage observed in the field was correlated with calculated vulnerability indices, and relevant recommendations were made related to the design and construction practices.


2020 ◽  
Vol 21 (5) ◽  
pp. 514
Author(s):  
Matthias Barus ◽  
Olivier Dalverny ◽  
Hélène Welemane ◽  
Jean-Pierre Faye ◽  
Carmen Martin

This works deals with the seismic vulnerability of buildings in the Pyrenees mountains region where almost a thousand earthquakes are recorded each year in the border area. The challenge is twofold: first to detect the damage due to seismic events and then to localize it inside studied buildings. Operational Modal Analysis (OMA) coupled with numerical modelling by Finite Element (FE) constitutes an interesting approach to address these issues. Here we intend to apply such methodology on a strategic building located in Andorre-la-Vieille whose structure is complex, irregular and heterogeneous. The structural behaviour of the building is studied through frequency computation method in order to identify its undamaged behaviour. A seismic event is next simulated by a non-linear dynamic computation method which creates damage within the structure. Numerical results (natural frequencies, modal shapes and damage location) allow highlighting damaged zones induced by the earthquake and quantify degradation level in these areas. Accordingly, some guidelines may be given in view of the future instrumentation of the building (accelerometers and RAR).


2021 ◽  
Author(s):  
Leslie Bonthron ◽  
Corey Beck ◽  
Alana Lund ◽  
Farida Mahmud ◽  
Xin Zhang ◽  
...  

With the recent identification of the Wabash Valley Seismic Zone in addition to the New Madrid Seismic Zone, Indiana’s Department of Transportation (INDOT) has become concerned with ensuring the adequate seismic performance of their bridge network. While INDOT made an effort to reduce the seismic vulnerability of newly-constructed bridges, many less recent bridges still have the potential for vulnerability. Analyzing these bridges’ seismic vulnerability is a vital task. However, developing a detailed dynamic model for every bridge in the state using information from structural drawings is rather tedious and time-consuming. In this study, we develop a simplified dynamic assessment procedure using readily-available information from INDOT’s Bridge Asset Management Program (BIAS), to rapidly identify vulnerable bridges throughout the state. Eight additional data items are recommended to be added into BIAS to support the procedure. The procedure is applied in the Excel file to create a tool, which is able to automatically implement the simplified bridge seismic analysis procedure. The simplified dynamic assessment procedure and the Excel tool enable INDOT to perform seismic vulnerability assessment and identify bridges more frequently. INDOT can prioritize these bridges for seismic retrofits and efficiently ensure the adequate seismic performance of their assets.


Author(s):  
Mohamed Laissy ◽  
Mohammed Ismaeila

Nowadays, evaluation of the seismic performance of existing buildings has received great attention. This paper was carried out to study the effect of strengthening the existing reinforced concrete (RC) school buildings in Medina, Saudi Arabia through assessing the seismic performance and retrofitting where seismic analysis and design were done using equivalent static analysis method according to Saudi Building Code (SBC 301) and SAP2000 software. A Typical five-story RC school building designed according to the SBC301 has been investigated in a comparative study to determine the suitable strengthening methods such as RC shear walls and steel X-bracing methods. The results revealed that the current design of RC school buildings located in Medina was unsafe, inadequate, and unsatisfied to mitigate seismic loads. Moreover, adding steel X-bracing and RC shear walls represent a suitable strategy to reduce their seismic vulnerability.


Sign in / Sign up

Export Citation Format

Share Document