Experimental Investigation of Axial Compressive Behavior of Large-Scale Circular Concrete Columns Confined by Prestressed CFRP Strips

2019 ◽  
Vol 145 (8) ◽  
pp. 04019070 ◽  
Author(s):  
Changdong Zhou ◽  
Siha A. ◽  
Yikun Qiu ◽  
Qinglong Pan
2018 ◽  
Vol 765 ◽  
pp. 355-360 ◽  
Author(s):  
Sakol Suon ◽  
Shahzad Saleem ◽  
Amorn Pimanmas

This paper presents an experimental study on the compressive behavior of circular concrete columns confined by a new class of composite materials originated from basalt rock, Basalt Fiber Reinforced Polymer (BFRP). The primary objective of this study is to observe the compressive behavior of BFRP-confined cylindrical concrete column specimens under the effect of different number of layers of basalt fiber as a study parameter (3, 6, and 9 layers). For this purpose, 8 small scale circular concrete specimens with no internal steel reinforcement were tested under monotonic axial compression to failure. The results of BFRP-confined concrete specimens of this study showed a bilinear stress-strain response with two ascending branches. Consequently, the performance of confined columns was improved as the number of BFRP layer was increased, in which all the specimens exhibited ductile behavior before failure with significant strength enhancement. The experimental results indicate the well-performing of basalt fiber in improving the concrete compression behavior with an increase in number of FRP layers.


Author(s):  
J. A. Walsh ◽  
D. G. Gregory-Smith

This paper presents results of an experimental investigation into the effects of inlet skew on the flowfield of a large scale axial flow turbine cascade. The results are presented in terms of the development of the streamwise vorticity since, in classical terms, the streamwise vorticity generates the transverse velocity components that cause the generation of the secondary losses. Inlet skew is shown to have a profound effect on the distribution and magnitude of the generated losses. A number of correlations for the secondary losses are compared with the measured values and it is shown that the correlations are not adequate for accurate loss prediction purposes.


Sign in / Sign up

Export Citation Format

Share Document