Bond–Slip Models for Corroded RC Members Exposed to Fire

2022 ◽  
Vol 148 (3) ◽  
Author(s):  
Faraz Tariq ◽  
Pradeep Bhargava
Keyword(s):  
2021 ◽  
Vol 79 ◽  
pp. 103061
Author(s):  
Hussein Ghanim Hasan ◽  
Talha Ekmekyapar
Keyword(s):  

2021 ◽  
Vol 229 ◽  
pp. 111612
Author(s):  
Mu-Zi Zhao ◽  
Dawn E. Lehman ◽  
Charles W. Roeder
Keyword(s):  

2020 ◽  
Vol 9 (1) ◽  
pp. 637-649 ◽  
Author(s):  
Zhan Guo ◽  
Qingxia Zhu ◽  
Wenda Wu ◽  
Yu Chen

AbstractThe article describes an experimental study on the bond–slip performance between the pultruded glass fiber-reinforced polymer (GFRP) tube and the nano-CaCO3 concrete. Taking the nano-CaCO3 concrete strength and GFRP tube thickness as primary parameters, nine specimens were designed and tested to study the influence of these parameters on the bond strength of the specimens. Besides, three specimens filled with the ordinary concrete were also tested by using the push-out tests to make comparisons with the bond performance of the specimens filled with nano-CaCO3 concrete. A total of four push-out tests were conducted on each specimen. The experimental results indicate that there are two types of axial load–slip curves for each specimen in four push-out tests. Moreover, comparison of the results of the push-out tests in the same direction shows that the bond failure load of the specimen decreases with the increase in the number of push-out tests. Based on the analysis of the test results, it is shown that the bond performance between the GFRP tube and the nano-CaCO3 concrete is better than that between the GFRP tube and the ordinary concrete. Furthermore, as the nano-CaCO3 concrete strength increases, the bond strength of the specimens decreases, indicating that the concrete strength has a negative effect on the bond strength. When the nano-CaCO3 concrete strength is relatively smaller (C20), the bond strength of the specimens decreases with the increase in the thickness of the GFRP tube. However, when the nano-CaCO3 concrete strength is relatively larger (C30 and C40), the bond strength of the specimens increases as the thickness of the GFRP tube increases.


CivilEng ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 14-34
Author(s):  
Konstantinos Tsiotsias ◽  
Stavroula J. Pantazopoulou

Experimental procedures used for the study of reinforcement to concrete bond have been hampered for a long time by inconsistencies and large differences in the obtained behavior, such as bond strength and mode of failure, depending on the specimen form and setup used in the test. Bond is controlled by the mechanics of the interface between reinforcement and concrete, and is sensitive to the influences of extraneous factors, several of which underlie, but are not accounted for, in conventional pullout test setups. To understand and illustrate the importance of specimen form and testing arrangement, a series of computational simulations are used in the present work on eight distinct variants of conventional bar pullout test setups that are used routinely in experimental literature for the characterization of bond-slip laws. The resulting bond strength increase generated by unaccounted confining stress fields that arise around the bar because of the boundary conditions of the test setup is used to classify the tests with respect to their relevance with the intended use of the results. Of the pullout setups examined, the direct tension pullout test produced the most conservative bond strength results, completely eliminating the contributions from eccentricity and passive confinement.


2020 ◽  
Vol 4 (4) ◽  
pp. 182
Author(s):  
Luciano Ombres ◽  
Salvatore Verre

In the paper, the bond between a composite strengthening system consisting of steel textiles embedded into an inorganic matrix (steel reinforced grout, SRG) and the concrete substrate, is investigated. An experimental investigation was carried out on medium density SRG specimens; direct shear tests were conducted on 20 specimens to analyze the effect of the bond length, and the age of the composite strip on the SRG-to-concrete bond behavior. In particular, the tests were conducted considering five bond length (100, 200, 250, 330, and 450 mm), and the composite strip’s age 14th, 21st, and 28th day after the bonding. Test results in the form of peak load, failure modes and, bond-slip diagrams were presented and discussed. A finite element model developed through commercial software to replicate the behavior of SRG strips, is also proposed. The effectiveness of the proposed numerical model was validated by the comparison between its predictions and experimental results.


2021 ◽  
Vol 120 ◽  
pp. 105061
Author(s):  
Yiteng Zhang ◽  
Mingnian Wang ◽  
Li Yu ◽  
Xiaohan Guo ◽  
Zhuhong Wang ◽  
...  
Keyword(s):  

2013 ◽  
Vol 302 ◽  
pp. 359-364
Author(s):  
X.H. Zheng ◽  
P.Y. Huang ◽  
X.Y. Guo ◽  
Q. Han

Externally bonded reinforcing technique with fiber reinforced polymer (FRP) has been widely used in civil engineering. The performance of the interface between FRP and concrete is one of the key factors affecting the behavior of the strengthened structures. This paper presents a detailed study on the bond-slip mechanism between carbon fiber laminate (CFL) and concrete based on double-shear tests. 8 specimens with different bonded length and width of CFL were tested under static loading. Strain gauges along the CFL face and displacement sensor were used to measure longitudinal strains and slip of the interface. The bond-slip constitutive relation of the interface between CFL and concrete was analyzed with the testing results. Compared with four different bond-slip models, a shear stress-slip model was proposed based on the experimental data.


2011 ◽  
Vol 47 (5) ◽  
pp. 529-538 ◽  
Author(s):  
D. Y. Cho ◽  
S. K. Park ◽  
S. N. Hong

Sign in / Sign up

Export Citation Format

Share Document