Application of Sap Flow Measurement in Real Time Soil Moisture Management

Author(s):  
S. Takeuchi ◽  
T. Yano
1991 ◽  
Vol 29 (1) ◽  
pp. 98-101 ◽  
Author(s):  
G. McCurrach ◽  
A. L. Evans ◽  
D. C. Smith ◽  
M. T. Gordon ◽  
M. B. D. Cooke

2020 ◽  
Vol 12 (17) ◽  
pp. 2861
Author(s):  
Jifu Yin ◽  
Xiwu Zhan ◽  
Jicheng Liu

Soil moisture plays a vital role for the understanding of hydrological, meteorological, and climatological land surface processes. To meet the need of real time global soil moisture datasets, a Soil Moisture Operational Product System (SMOPS) has been developed at National Oceanic and Atmospheric Administration to produce a one-stop shop for soil moisture observations from all available satellite sensors. What makes the SMOPS unique is its near real time global blended soil moisture product. Since the first version SMOPS publicly released in 2010, the SMOPS has been updated twice based on the users’ feedbacks through improving retrieval algorithms and including observations from new satellite sensors. The version 3.0 SMOPS has been operationally released since 2017. Significant differences in climatological averages lead to remarkable distinctions in data quality between the newest and the older versions of SMOPS blended soil moisture products. This study reveals that the SMOPS version 3.0 has overwhelming advantages of reduced data uncertainties and increased correlations with respect to the quality controlled in situ measurements. The new version SMOPS also presents more robust agreements with the European Space Agency’s Climate Change Initiative (ESA_CCI) soil moisture datasets. With the higher accuracy, the blended data product from the new version SMOPS is expected to benefit the hydrological, meteorological, and climatological researches, as well as numerical weather, climate, and water prediction operations.


2017 ◽  
Vol 198 ◽  
pp. 17-29 ◽  
Author(s):  
Christian Massari ◽  
Chun-Hsu Su ◽  
Luca Brocca ◽  
Yan-Fang Sang ◽  
Luca Ciabatta ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Eva Messinger ◽  
Heinz Coners ◽  
Dietrich Hertel ◽  
Christoph Leuschner

<p>Climate models predict hotter and dryer summers in Germany, with longer periods of extreme droughts like in summer 2018. How does this affect the water uptake and transport in tree roots growing in the top- and subsoil?</p><p>In summer 2018 and 2019 we measured the water transport in fine roots (<5mm) of European Beech on tertiary sand and triassic sandstone up to 2 m depth. We adapted the well-established HRM technique to enable measurements of very small sap flow rates in small roots. Thus, we measured the water transport as a temperature ratio of a stretching heat pulse.</p><p>Relating sap flow to root surface area, root depth, anatomy, soil moisture, and VPD allows for interesting insights in tree water uptake rates: Where are the limits of drought intensity and duration, for water uptake and recovery of small roots? Are there differences in the function of top- and subsoil roots? Are roots specialized for water transport or nutrient uptake? The investigated data gives a first hint on how the water transport in Beech roots differs with changes in the soil moisture and VPD under changing climate.</p>


2021 ◽  
Author(s):  
Erin Nicholls ◽  
Gordon Drewitt ◽  
Sean Carey

<p>As a result of altitude and latitude amplified impacts of climate change, widespread alterations in vegetation composition, density and distribution are widely observed across the circumpolar north. The influence of this vegetation change on the timing and magnitude of hydrological fluxes is uncertain, and is confounded by changes driven by increased temperatures and altered precipitation (P) regimes. In northern alpine catchments, quantification of total evapotranspiration (ET) and evaporative partitioning across a range of elevation-based ecosystems is critical for predicting water yield under change, yet remains challenging due to coupled environmental and phenological controls on transpiration (T). In this work, we analyze 6 years of surface energy balance, ET, and sap flow data at three sites along an elevational gradient in a subarctic, alpine catchment near Whitehorse, Yukon Territory, Canada. These sites provide a space-for-time evaluation of vegetation shifts and include: 1) a low-elevation boreal white spruce forest (~20 m), 2) a mid-elevation subalpine taiga comprised of tall willow (Salix) and birch (Betula) shrubs (~1-3 m) and 3) a high-elevation subalpine taiga with shorter shrub cover (< 0.75 m) and moss, lichen, and bare rock. Specific objectives are to 1) evaluate interannual ET dynamics within and among sites under different precipitation regimes , and 2) assess the influence of vegetation type and structure, phenology, soil and meteorological controls on ET dynamics and partitioning.  Eddy covariance and sap flow sensors operated year-round at the forest and during the growing season at the mid-elevation site on both willow and birch shrubs for two years. Growing season ET decreased and interannual variability increased with elevation, with June to August ET totals of 250 (±3) mm at Forest, 192 (±9) mm at the tall shrub site, and 180 (± 26) mm at the short shrub site. Comparatively, AET:P ratios were the highest and most variable at the forest (2.4 ± 0.3) and similar at the tall and short shrub (1.2 ± 0.1).  At the forest, net radiation was the primary control on ET, and 55% was direct T from white spruce. At the shrub sites, monthly ET rates were similar except during the peak growing season when T at the tall shrub site comprised 89% of ET, resulting in greater total water loss. Soil moisture strongly influenced T at the forest, suggesting the potential for moisture stress, yet not at the shrub sites where there was no moisture limitation. Results indicate that elevation advances in treeline will increase overall ET and lower interannual variability; yet the large water deficit during summer implies a strong reliance on early spring snowmelt recharge to sustain soil moisture. Changes in shrub height and density will increase ET primarily during the mid-growing season. This work supports the assertion that predicted changes in vegetation type and structure will have a considerable impact on water partitioning in northern regions, and will also vary in a multifaceted way in response to changing temperature and P regimes.  </p>


Author(s):  
Nicole Gailey ◽  
Noman Rasool

Canada and the United States have vast energy resources, supported by thousands of kilometers (miles) of pipeline infrastructure built and maintained each year. Whether the pipeline runs through remote territory or passing through local city centers, keeping commodities flowing safely is a critical part of day-to-day operation for any pipeline. Real-time leak detection systems have become a critical system that companies require in order to provide safe operations, protection of the environment and compliance with regulations. The function of a leak detection system is the ability to identify and confirm a leak event in a timely and precise manner. Flow measurement devices are a critical input into many leak detection systems and in order to ensure flow measurement accuracy, custody transfer grade liquid ultrasonic meters (as defined in API MPMS chapter 5.8) can be utilized to provide superior accuracy, performance and diagnostics. This paper presents a sample of real-time data collected from a field install base of over 245 custody transfer grade liquid ultrasonic meters currently being utilized in pipeline leak detection applications. The data helps to identify upstream instrumentation anomalies and illustrate the abilities of the utilization of diagnostics within the liquid ultrasonic meters to further improve current leak detection real time transient models (RTTM) and pipeline operational procedures. The paper discusses considerations addressed while evaluating data and understanding the importance of accuracy within the metering equipment utilized. It also elaborates on significant benefits associated with the utilization of the ultrasonic meter’s capabilities and the importance of diagnosing other pipeline issues and uncertainties outside of measurement errors.


Sign in / Sign up

Export Citation Format

Share Document