Evaluation of Complete and Incomplete Mixing Models in Water Distribution Pipe Network Simulations

Author(s):  
Clifford K. Ho ◽  
Christopher Y. Choi ◽  
Sean A. McKenna
2012 ◽  
Vol 3 (4) ◽  
pp. 214-216
Author(s):  
Urmi Parikh ◽  
◽  
B. M. Vadher B. M. Vadher ◽  
Dr. P. G. Agnihotry Dr. P. G. Agnihotry

2018 ◽  
Vol 7 (2.1) ◽  
pp. 92
Author(s):  
Dharmendra Kumar Tyagi ◽  
Mrinmoy Majumder ◽  
Chander Kant ◽  
Ashish Prabhat Singh

Hazen-William equation is used to estimate the Fluid flow in closed channel. There are various models for estimation of pipe flow, however the accuracy and reliability of models varies due to the empirical nature of the Hazen-William constant .the applicability of model also become constrained due to the dependency of constant on pipe material, dimension and flow potential. Different type of pipeline arranged in different Networks will require different value of the constant and is generally retrieved from the data collected for the pipe network. The case dependency of the model has makes the model erroneous and often subjective that is why the present study tries to propose a model which can be used for any network where the output will depend upon the inputs. In this aspect the soft computation techniques: - GMDH and PSO was utilized in an unconventional way to establish the value of CHW =f (H, L, V, D).  According to result the GMDH becomes the better model than the PSO where the accuracy is about 76.315%. 


2014 ◽  
Vol 15 (3) ◽  
pp. 474-482 ◽  
Author(s):  
Tingchao Yu ◽  
Liang Tao ◽  
Yu Shao ◽  
Tuqiao Zhang

Recent studies have focused on mixing behavior at cross junctions, and incomplete mixing at cross junctions in water distribution systems was verified. Nevertheless, the research results on mixing at other junction configurations, such as double-Tee junctions, were insufficient. Double-Tee junctions can potentially be misrepresented as cross junctions because of network skeletonization. Hence, the diffusion and dilution of the contaminants at junctions were largely underestimated. To examine the mixing phenomenon and collect accurate mixing data at the double-Tee junction, a series of laboratory experiments was carried out with various Reynolds number ratios at the inlets and outlets combined with different dimensionless connecting pipe lengths (L/D). Results showed that the dimensionless connecting pipe length served an important function in mixing at double-Tee junctions. The cross junction was the special case of the double-Tee joint when L/D=0. The complete mixing state occurred when L/D→∞. The mixing degree of the double-Tee junction was between the cross junction and the complete mixing state. A conceptual model that described the mixing behavior at double-Tee junctions was developed. The model included the use of the dimensionless parameter φ, which defined the degree of departure from complete mixing.


2018 ◽  
Vol 153 ◽  
pp. 09001
Author(s):  
Rangsan Wannapop ◽  
Thira Jearsiripongkul ◽  
Krit Jiamjiroch

Metropolitan Waterworks Authority (MWA) is Thailand's national government agency responsible for the supply of water to 3 provinces Bangkok, Nonthaburi and Samut Prakan with more than 2,384.9 km2 of service area and 2,281,058 consumers in the year 2016. Bangkok, which is both the capital and the economic center of the country, is densely populated. Consequently, there is a huge demand for water; MWA has to supply 5.914 million cubic meters of water per day. Because the metropolitan water supply area is a densely populated city, the water supply system is very complex like a spider’s web. For this reason, MWA has adopted EPANET software for its water supply managing tool in the main pipeline system. There are some mistakes in the main pipe network; the elevations of the nodes are not assigned, so there are some errors. In this study, we have assigned elevations for all nodes on the pipeline network based on mean sea level (MSL). After adjusting the elevation of each node, it was found that the new pipeline network has increased the correlation between means to 0.893 from the existing model mean of that is 0.803 of accuracy up 0.09 (11.2%).


2021 ◽  
Author(s):  
Ran Yan ◽  
Yu Li ◽  
Jinhui Jeanne Huang

<p>During January 2016 and December 2020, eastern and southern China including Shanghai experienced a rapid drop in temperatures along with snow. This cold wave which also had a severe impact on water distribution networks. Leakage of pipe network causes serious economic loss and waste of water resources. Nonetheless, cold wave is not the only factor affecting leakage from a pipe network. There are also other factors including the burial depth of pipes, the materials of pipes, the diameters of pipes, break history and so on. In this work, we use machine learning method and Bayesian distribution regression to explore the relationship between pipe leaks and impact factors. Based on results, risk maps of water distribution networks are generated. This research indicated that which risk factors is important for leakage detection and water loss management of urban water supply network, which can be promising for wide practical applications due to rapid expansion of data.</p>


2018 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Angga Budi Kusuma

Abstrak Evaluasi jaringan perpipaan merupakan bagian dari evaluasi kinerja penyediaan air minum. Sistem Informasi Geografis (SIG) memberikan informasi akurat mengenai informasi kebumian dan integrasinya dengan Epanet memberikan efisiensi dalam evaluasi jaringan perpipaan. Jaringan Perpipaan Sistem Lendah merupakan jaringan distribusi air minum dengan sistem pompa-gravitasi dengan sumber air baku Sungai Progo. Hasil analisis menunjukan bahwa Sistem Lendah mampu menyediakan kebutuhan air minum selama 24 jam. Sisa tekanan air di beberapa lokasi sangat tinggi diatas persyaratan menyebebabkan rentan kebocoran. Kecepatan aliran di beberapa ruas pipa masih dibawah kecepatan yang dipersyaratkan menyebabkan potensi pengendapan dalam pipa. Beberapa solusi dapat digunakan untuk mengatasi permasalahan tersebut dengan mengganti jenis pipa, mengganti diameter pipa sesuai dengan kriteria, menambahkan bak pelepas tekanan (BTP) atau pressure reducing valve (valve) untuk mengurangi sisa tekanan di beberapa titik. Kata Kunci: Sistem Informasi Geografis, Epanet, Sistem Lendah, Jaringan PerpipaanAbstractPipe network evaluation is a part of evaluation of drinking water supply performance. Geographic Information System (GIS) provides accurate information about earth and its integration with Epanet gives eficiency in pipe network evaluation. Lendah system pipe network is drinking water distribution networks with pump-gravitation system and water of Progo River as the water source. The analyst shows that Lendah System is capable of providing drinking water needs 24 hours daily.The remaining water pressure in several locations are exceeded standard causing leakage vulnerability. Water velocity of several pipe segments is below required velocity. Several solutions could be taken to solve those problems they change pipe type, change pipe diameter suited to standard, add pressure release tube (PRT) or pressure reducing valve (valve) to reduce remaining pressure in several nodes. Keywords: Geographic Information Systems, Epanet, Lendah System, Pipe Network


2015 ◽  
Vol 16 (3) ◽  
pp. 727-736 ◽  
Author(s):  
Tao Tao ◽  
Jiada Li ◽  
Kunlun Xin ◽  
Peng Liu ◽  
Xiaolan Xiong

Water distribution systems in hilly areas are always divided into several zones due to the undulating terrain. The present approach of dividing water distribution systems lacks an assessment index and is characterized by a low degree of automation. With the building of a mathematical model, this paper introduces two indicators – pressure limitation and pressure variation – to enable the automatic division of the water supply pipe network. It prioritizes economic index as the objective function in the evaluation of the division of water distribution systems in hilly areas, and then selects the optimal division scheme by generic algorithm in a large number of candidates. The SY terrain in YW City China is used for verification. Compared to traditional water supply partition methods, this procedure is easier to operate time-savingly by staff and is more automatic.


2013 ◽  
Vol 777 ◽  
pp. 360-364
Author(s):  
Yuan Li ◽  
Feng E. Zhang ◽  
Jian Xu ◽  
Chun Fang Chen

The cancer risk assessment model recommended US EPA was used to access the carcinogenicity of disinfection byproducts (DBPs) in water distribution network in a Southern City of Jiangsu. The trihalomethanes (THMs) and haloacetic acids (HAAs) with carcinogenic risk was considered to be the research focus on the cancer risk assessment. The carcinogenic risk along the pipeline was explored through monitoring the changes of the THMs and HAAs .The results showed as follows: the disinfection by-products increased along the pipe network and cancer risk increased too. The maximum cancer risk within the area of water supply pipe network was calculated. The RTmax was 4.72×10-5, which was between5.10-5 and 10-6. So the carcinogenic risk could be accepted and some measures could be considered to be taken to reduce the carcinogenic risk.


Sign in / Sign up

Export Citation Format

Share Document