Division method for water distribution networks in hilly areas

2015 ◽  
Vol 16 (3) ◽  
pp. 727-736 ◽  
Author(s):  
Tao Tao ◽  
Jiada Li ◽  
Kunlun Xin ◽  
Peng Liu ◽  
Xiaolan Xiong

Water distribution systems in hilly areas are always divided into several zones due to the undulating terrain. The present approach of dividing water distribution systems lacks an assessment index and is characterized by a low degree of automation. With the building of a mathematical model, this paper introduces two indicators – pressure limitation and pressure variation – to enable the automatic division of the water supply pipe network. It prioritizes economic index as the objective function in the evaluation of the division of water distribution systems in hilly areas, and then selects the optimal division scheme by generic algorithm in a large number of candidates. The SY terrain in YW City China is used for verification. Compared to traditional water supply partition methods, this procedure is easier to operate time-savingly by staff and is more automatic.

2020 ◽  
Vol 20 (6) ◽  
pp. 369-377
Author(s):  
Gunhui Chung ◽  
Won Soo Ohk

Due to urban overcrowding, the population density of residential areas and water use per unit are increasing. Therefore, it is necessary to study the flow of water supplied to cities and to improve the healthy circulation of urban water. This study used Modelica, a non-causal analytical program. Using Open Modelica, the researchers constructed a model linking water distribution and sewerage, as the basis of a balanced urban water model. Using the programmer's toolkit provided by EPA-NET and EPA-SWMM, which are commonly used to simulate the existing water supply and sewage pipe networks, Open Modelica-based water distribution networks and sewage pipe networks can be connected and simulated based on the customer block. A model was built so that 90% of the hourly water consumption supplied to the water supply pipe network can be automatically introduced into the sewage pipe network. If a matching table is constructed to connect the nodes of the water supply pipe network and the sewer pipe network, the nodes will reflect in the graphical user interface (GUI) developed in Open Modelica. It was developed to enable modification of links, pumps, tanks, and valves. The 48-hour water supply was simulated using the developed model, and it was confirmed that water supply and sewage networks were successfully connected. In the future, we plan to develop a more expanded and realistic urban water circulation model by considering additional urban water circulation factors, such as sewage treatment, water reuse, rainwater use, storm runoff, and low-impact development facilities. Through this study, it was confirmed that Modelica can simulate changes in the system over time. Since it is a formula-based non-causal simulation language, it is possible to establish and reuse relationships between blocks through block-by-block development of urban water circulation elements. It is expected to contribute to the visualization and concretization of future urban water circulation models.


Resources ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 162 ◽  
Author(s):  
Barbara Tchórzewska-Cieślak ◽  
Katarzyna Pietrucha-Urbanik ◽  
Dorota Papciak

Given that a consequence of a lack of stability of the water in a distribution system is increased susceptibility to secondary contamination and, hence, a threat to consumer health, in the work detailed here we assessed the risk of such a system experiencing quality changes relating to the biological and chemical stability of water intended for drinking. Utilizing real operational data from a water treatment station, the presented analysis of the stability was performed based on the fault tree method. If they are to protect their critical-status water supply infrastructure, water supply companies should redouble their efforts to distribute stable water free of potentially corrosive properties. To that end, suggestions are made on the safeguarding of water distribution systems, with a view to ensuring the safety of operation and the long-term durability of pipes.


2014 ◽  
Vol 17 (1) ◽  
pp. 20-35 ◽  
Author(s):  
João Marques ◽  
Maria Cunha ◽  
Dragan A. Savić

This paper presents a real options approach to handling uncertainties associated with the long-term planning of water distribution system development. Furthermore, carbon emissions associated with the installation and operation of water distribution networks are considered. These emissions are computed by taking an embodied energy approach to the different materials used in water networks. A simulated annealing heuristic is used to optimise a flexible eco-friendly design of water distribution systems for an extended life horizon. This time horizon is subdivided into different time intervals in which different possible decision paths can be followed. The proposed approach is applied to a case study and the results are presented according to a decision tree. Lastly, some comparisons and results are used to demonstrate the quality of the results of this approach.


Author(s):  
Sornsiri Sriboonnak ◽  
Phacharapol Induvesa ◽  
Suraphong Wattanachira ◽  
Pharkphum Rakruam ◽  
Adisak Siyasukh ◽  
...  

The formation of trihalomethanes (THMs) in natural and treated water from water supply systems is an urgent research area due to the carcinogenic risk they pose. Seasonal effects and pH have captured interest as potential factors affecting THM formation in the water supply and distribution systems. We investigated THM occurrence in the water supply chain, including raw and treated water from water treatment plants (coagulation, sedimentation, sand filtration, ClO2-disinfection processes, and distribution pipelines) in the Chiang Mai municipality, particularly the educational institute area. The effects of two seasons, rainy (September–November 2019) and dry (December 2019–February 2020), acted as surrogates for the water quality profile and THM occurrence. The results showed that humic acid was the main aromatic and organic compound in all the water samples. In the raw water sample, we found a correlation between surrogate organic compounds, including SUVA and dissolved organic carbon (DOC) (R2 = 0.9878). Four species of THMs were detected, including chloroform, bromodichloromethane, dibromochloromethane, and bromoform. Chloroform was the dominant species among the THMs. The highest concentration of total THMs was 189.52 μg/L. The concentration of THMs tended to increase after chlorination when chlorine dioxide and organic compounds reacted in water. The effect of pH on the formation of TTHMs was also indicated during the study. TTHM concentrations trended lower with a pH ≤ 7 than with a pH ≥ 8 during the sampling periods. Finally, in terms of health concerns, the concentration of TTHMs was considered safe for consumption because it was below the standard (<1.0) of WHO’s Guideline Values (GVs).


2021 ◽  
Vol 11 (2) ◽  
pp. 143-150
Author(s):  
E. Vitan ◽  
Anca Hotupan ◽  
Adriana Hadarean

Abstract The performance evaluation of an implemented water distribution network is in tight relation with the choice of adequate measures for water loss reduction. Hence, the consequences of placing the water network in a wrong performance category are bad and will conduct to unreasonably costs or considerable water loss volumes. Therefore, the evaluation of the water network performance level based on both Non-Revenue Water (NRW) and Infrastructure Leakage Index (ILI) indicators is to be recommended. This paper deals with the performance evaluation of water distribution systems based on the calculated performance indicators NRW and ILI. For this purpose, collected data for a period of one year from 12 Romanian small water distribution systems and two simplified average pressure determination methods were used.


Author(s):  
Maryam Kammoun ◽  
Amina Kammoun ◽  
Mohamed Abid

Abstract Leakage in water distribution systems is a significant long-standing problem due to the huge economic and ecological losses. Different leak detection studies have been examined in literature using different types of technologies and data. Currently, although machine learning techniques have achieved tremendous progress in outlier detection approaches, they are still limited in terms of water leak detection applications. This research aims to improve the leak detection performances by refining the choices of learning data and techniques. From this perspective, commonly used techniques for leak detection are assessed in this paper, and the characteristics of hydraulic data are investigated. Four intelligent algorithms are compared, namely k-nearest neighbors, support vector machines, logistic regression, and multi-layer perceptron. This study focuses on six experiments based on identifying outliers in various packages of pressure and flow data, yearly data, seasonal data, night data, and flow data difference to detect leakage in water distribution networks. Different scenarios of realistic water demand in two networks from the benchmark dataset LeakDB are used. Results demonstrate that the leak detection accuracy varies between 30% and 100% depending on the experiment and the choices of algorithms and data.


2020 ◽  
Vol 69 (6) ◽  
pp. 578-590
Author(s):  
Florent Pourcel ◽  
Sophie Duchesne

Abstract Unidirectional flushing is a widely used method to remove sedimented particles from water distribution systems and prevent water discolouration events. However, it shows low efficiency in cases of high pressure losses, usually requires large volumes of water, and does not remove incrustations. Air scouring is known for being very effective in particle removal with minimal impacts from pressure loss, requiring little water and improving hydraulic capacities by removing soft incrustations. Flushing sequences of unidirectional flushing and air scouring were performed in similar conditions on 18 pipe sections from four water distribution networks located in the province of Quebec, Canada; unidirectional flushing was also performed on 14 additional pipe sections located in three other water distribution networks. Total suspended solid concentration of flushed water, water flow and pressure were recorded to estimate the amount of flushed particles, the required water volume and the evolution of hydraulic capacities. Within the studied networks, the water requirements for air scouring were approximately 8-fold less than for unidirectional flushing and did not significantly improve the hydraulic capacity of the cleaned pipes.


2018 ◽  
Vol 193 ◽  
pp. 02002
Author(s):  
Thi Minh Lanh Pham ◽  
Hai Ha Pham ◽  
Nguyen Anh Thu Do ◽  
Dinh Hong Le

All pipes in water supply network are installed underground, so it is difficult to identify pipe failure location during the operation of a system. Prediction of the risk of pipe failure in the water distribution systems is necessary for preparation of reparations and displacement of a pipe network system. Based on the probability of pipe failure, it will be possible to save money and labor cost for water supply companies. Many studies have been conducted on this topic, some of which used experimental models, others used statistical models in which recently many authors used regression model, but almost all the models come up with calculating the pipe failure rate per unit length of pipe in a year. It is not a direct probability of pipe failure. This article reviews various methods to evaluate pipe failure in water distribution systems. Based on that, the authors proposed two models: Regression Logistic Model and Decision Tree Model that would support an effective decision making for detecting the pipe failure and proposing appropriate solutions.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1440 ◽  
Author(s):  
Jorge García Morillo ◽  
Juan A. Rodríguez Díaz ◽  
Miguel Crespo ◽  
Aonghus McNabola

In Spain and other countries, open channel distribution networks have been replaced by on demand-pressurized networks to improve the water-use efficiency of the water distribution systems, but at the same time the energy requirements have dramatically risen. Under this scenario, methodologies to reduce the energy consumption are critical such as: irrigation network sectoring, critical hydrant detection, improving the efficiency of the pumping system and the irrigation system, or introducing solar energy for water supply. But once these measures are undertaken, the recovery of the energy inherent in excess pressure in the network should be investigated. Hydropower energy recovery in irrigation is still largely unexplored and requires further investigation and demonstration. All of these methodologies should be considered as useful tools for both, the reduction of energy consumption and the recovery of the excess energy in pressurized irrigation networks. To accomplish this, the REDAWN project (Reducing Energy Dependency in Atlantic Area Water Networks) aims to improve the energy efficiency of water networks through the installation of innovative micro-hydropower (MHP) technology. This technology will recover wasted energy in existing pipe networks across irrigation, public water supply, process industry, and waste-water network settings.


Sign in / Sign up

Export Citation Format

Share Document