Effects of Lane Changing in Heterogeneous Traffic Flow

ICCTP 2009 ◽  
2009 ◽  
Author(s):  
Fa Zhang ◽  
Qiao-xia Zhao
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Hao ◽  
Zhaolei Zhang ◽  
Zhibo Gao ◽  
Kefu Yi ◽  
Li Liu ◽  
...  

As the accident-prone sections and bottlenecks, highway weaving sections will become more complicated when it comes to the mixed-traffic environments with connected and automated vehicles (CAVs) and human-driven vehicles (HVs). In order to make CAVs accurately identify the driving behavior of manual-human vehicles to avoid traffic accidents caused by lane changing, it is necessary to analyze the characteristics of the mandatory lane-changing (MCL) process in the weaving area. An analytical MCL method based on the driver’s psychological characteristics is proposed in this study. Firstly, the driver’s MLC pressure concept was proposed by leading in the distance of the off-ramp. Then, the lane-changing intention was quantified by considering the driver’s MLC pressure and tendentiousness. Finally, based on the lane-changing intention and the headway distribution of the target lane, an MLC positions probability density model was proposed to describe the distribution characteristics of the lane-changing position. Through the NGSIM data verification, the lane-changing analysis models can objectively describe the vehicle lane-changing characteristics in the actual scenarios. Compared with the traditional lane-changing model, the proposed models are more interpretable and in line with the driving intention. The results show significant improvements in the lane-changing safe recognition of CAVs in heterogeneous traffic flow (both CAVs and HVs) in the future.


2020 ◽  
Vol 34 (21) ◽  
pp. 2050201
Author(s):  
Wenjing Wu ◽  
Renchao Sun ◽  
Anning Ni ◽  
Zhikang Liang ◽  
Hongfei Jia

Emerging connected autonomous vehicle (CAV) technologies provide an opportunity to the vehicle motion control to improve the traffic performance. This study simulated and evaluated the CAV-based speed and lane-changing (LC) control strategies at the expressway work zone in heterogeneous traffic flow. The control strategies of CAV are optimized by the multi-layer control structure based on model predictive control. The heterogeneous traffic flow composed of human-driven vehicles and CAVs is constructed based on cellular automata by the proposed Expected Distance-based Symmetric Two-lane Cellular Automate (ED-STCA) LC model and CAV car-following model. The six control strategies composed of variable speed limits (VSL), LC and their coordinated control strategies are experimented. The average travel time and throughput are selected to assess the advantages and disadvantages of each strategy under each combination of vehicles’ arrival rates and CAV mixed ratios. The numerical results show that: (i) the effect of the control strategy on the traffic is not obvious under free flow, and the control strategy may worsen the traffic under medium traffic. (ii) Early lane-changing control (ELC) is better than late lane-changing control (LLC) under medium traffic, and LLC is better under heavy traffic. (iii) [Formula: see text] is the best choice under heavy traffic and the mixed rate of CAVs is high. The simulation results obtained in the paper would provide some practical references for transportation agencies to manage the traffic in work zone under networking environment in the future.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Yangzexi Liu ◽  
Jingqiu Guo ◽  
John Taplin ◽  
Yibing Wang

The technology of autonomous vehicles is expected to revolutionize the operation of road transport systems. The penetration rate of autonomous vehicles will be low at the early stage of their deployment. It is a challenge to explore the effects of autonomous vehicles and their penetration on heterogeneous traffic flow dynamics. This paper aims to investigate this issue. An improved cellular automaton was employed as the modeling platform for our study. In particular, two sets of rules for lane changing were designed to address mild and aggressive lane changing behavior. With extensive simulation studies, we obtained some promising results. First, the introduction of autonomous vehicles to road traffic could considerably improve traffic flow, particularly the road capacity and free-flow speed. And the level of improvement increases with the penetration rate. Second, the lane-changing frequency between neighboring lanes evolves with traffic density along a fundamental-diagram-like curve. Third, the impacts of autonomous vehicles on the collective traffic flow characteristics are mainly related to their smart maneuvers in lane changing and car following, and it seems that the car-following impact is more pronounced.


Author(s):  
Abu Jar Md. Minhuz Uddin Ahmed ◽  
Md. Tarek Hasan ◽  
Md. Rakibul Alam ◽  
Md. Shamsul Hoque

If the global context of traffic flow researches are highlighted, it is observed that many researches have already been conducted with the Fundamental Diagrams of traffic flow for lane based homogeneous traffic. Studies related to propagation of shockwaves are being conducted as well. But for developing countries such as Bangladesh, it is predominant that non-lane based heterogeneous traffic exists in most of the roads. Firstly there is scarcely any lane concept among the drivers at all. Moreover frequent lane changing is a common phenomenon. For these reasons, responses of Fundamental Diagrams' shape are quite distinctive from already established shapes. Thus the main concern is to trace the deviation of the prevailing traffic flow parameters of traffic flow from those established equations. Video footage has been taken of roadway section marked suitably for measurement. Shockwaves due to lane changing for non-lane based and heterogeneous synchronized traffic flow has been accomplished and modelled using R and MATLAB analysis for a highway of Dhaka city, Bangladesh. After modeling the calibration and validation are done accordingly to distinguish the variation from ideal models and to verify that the study outcomes converge as well. It has been detected that shockwave induces significant decrement in flow and speed in case of specified traffic condition.


2020 ◽  
Vol 81 (8) ◽  
pp. 1486-1498
Author(s):  
M.A. Fedotkin ◽  
A.M. Fedotkin ◽  
E.V. Kudryavtsev

Author(s):  
Da Yang ◽  
Liling Zhu ◽  
Yun Pu

Although traffic flow has attracted a great amount of attention in past decades, few of the studies focused on heterogeneous traffic flow consisting of different types of drivers or vehicles. This paper attempts to investigate the model and stability analysis of the heterogeneous traffic flow, including drivers with different characteristics. The two critical characteristics of drivers, sensitivity and cautiousness, are taken into account, which produce four types of drivers: the sensitive and cautious driver (S-C), the sensitive and incautious driver (S-IC), the insensitive and cautious driver (IS-C), and the insensitive and incautious driver (IS-IC). The homogeneous optimal velocity car-following model is developed into a heterogeneous form to describe the heterogeneous traffic flow, including the four types of drivers. The stability criterion of the heterogeneous traffic flow is derived, which shows that the proportions of the four types of drivers and their stability functions only relating to model parameters are two critical factors to affect the stability. Numerical simulations are also conducted to verify the derived stability condition and further explore the influences of the driver characteristics on the heterogeneous traffic flow. The simulations reveal that the IS-IC drivers are always the most unstable drivers, the S-C drivers are always the most stable drivers, and the stability effects of the IS-C and the S-IC drivers depend on the stationary velocity. The simulations also indicate that a wider extent of the driver heterogeneity can attenuate the traffic wave.


2011 ◽  
Vol 22 (03) ◽  
pp. 271-281 ◽  
Author(s):  
SHINJI KUKIDA ◽  
JUN TANIMOTO ◽  
AYA HAGISHIMA

Many cellular automaton models (CA models) have been applied to analyze traffic flow. When analyzing multilane traffic flow, it is important how we define lane-changing rules. However, conventional models have used simple lane-changing rules that are dependent only on the distance from neighboring vehicles. We propose a new lane-changing rule considering velocity differences with neighboring vehicles; in addition, we embed the rules into a variant of the Nagel–Schreckenberg (NaSch) model, called the S-NFS model, by considering an open boundary condition. Using numerical simulations, we clarify the basic characteristics resulting from different assumptions with respect to lane changing.


Author(s):  
Jianzhong Chen ◽  
Yang Zhou ◽  
Jing Li ◽  
Huan Liang ◽  
Zekai Lv ◽  
...  

In this paper, an improved multianticipative cooperative adaptive cruise control (CACC) model is proposed based on fully utilizing multivehicle information obtained by vehicle-to-vehicle communication. More flexible, effective and practical spacing strategy is embedded into the model. We design a new lane-changing rule for CACC vehicles on the freeway. The rule considers that CACC vehicles are more inclined to form a platoon for coordinated control. Furthermore, we investigate the effect of CACC vehicles on two-lane traffic flow. The results demonstrate that introducing CACC vehicles into mixed traffic and forming CACC platoon to cooperative control can improve traffic efficiency and enhance road capacity to a certain extent.


Sign in / Sign up

Export Citation Format

Share Document