Numerical Analysis of Dynamic Response and Influence Factors on PCC Pile Composite Foundation of High Speed Railway

IACGE 2013 ◽  
2013 ◽  
Author(s):  
Qiang Fu ◽  
Xuanming Ding ◽  
Hanlong Liu ◽  
Gangqiang Kong
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Chen Daihai ◽  
Zhou Shuai ◽  
Xu Shizhan ◽  
Li Zheng ◽  
Fang Yilin

Taking the simply supported box girder bridge of high-speed railway as an example, the effect of cross-sectional decentralized centre of mass and shear on the spatial beam element stiffness matrix was theoretically derived. Based on the vehicle-bridge coupling vibration analysis method of the railway bridge, an analysis program of vehicle-bridge coupling vibration for the high-speed railway was compiled, and its reliability was verified through an example analysis. On this basis, considering the cross-sectional decentralized centre of mass and shear, the influence factors of vehicle-bridge coupling vibration response were studied, which included the offset distance of the beam section’s mass and shear centre, offset distance of track centreline, vehicle weight, and vehicle speed. The results show that the additional items of the spatial beam element stiffness matrix are generated by the torsion effect when the cross-sectional decentralized centre of mass and shear is considered, and it will affect the lateral and vertical stiffness of the element. The cross-sectional decentralized centre of mass and shear has a significant effect on the lateral dynamic response of the bridge’s mid-span, but the influence on the vertical response of the bridge and the dynamic response of the car body is small. The main influence factors of the lateral dynamic response of the bridge are the vertical offset distance of the beam section’s centre of mass and shear, the lateral offset distance of the track centreline, and the vehicle weight.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaohui Zhang ◽  
Yao Shan ◽  
Xinwen Yang

A model based on the theory of train-track-bridge coupling dynamics is built in the article to investigate how high-speed railway bridge pier differential settlement can affect various railway performance-related criteria. The performance of the model compares favorably with that of a 3D finite element model and train-track-bridge numerical model. The analysis of the study demonstrates that all the dynamic response for a span of 24 m is slightly larger than that for a span of 32 m. The wheel unloading rate increases with pier differential settlement for all of the calculation conditions considered, and its maximum value of 0.695 is well below the allowable limit. Meanwhile, the vertical acceleration increases with pier differential settlement and train speed, respectively, and the values for a pier differential settlement of 10 mm and speed of 350 km/h exceed the maximum allowable limit stipulated in the Chinese standards. On this basis, a speed limit for the exceeding pier differential settlement is determined for comfort consideration. Fasteners that had an initial tensile force due to pier differential settlement experience both compressive and tensile forces as the train passes through and are likely to have a lower service life than those which solely experience compressive forces.


2017 ◽  
Vol 20 (11) ◽  
pp. 1623-1631 ◽  
Author(s):  
Patrick Salcher ◽  
Christoph Adam

The objective of this study is to provide the engineering practice with a tool for simplified dynamic response assessment of high-speed railway bridges in the pre-design phase. To serve this purpose, a non-dimensional representation of the characteristic parameters of the train–bridge interaction problem is described and extended based on a beam bridge model subjected to the static axle loads of the crossing high-speed train. The non-dimensional parameter representation is used to discuss several code-related design issues. It is revealed that in an admitted parameter domain, a code-regulated static assessment of high-speed railway bridges may under-predict the actual dynamic response. Furthermore, the minimum mass of a bridge as a function of the characteristic parameters is presented to comply with the maximum bridge acceleration specified in standards.


2011 ◽  
Vol 255-260 ◽  
pp. 3998-4002
Author(s):  
Jun Li Luo ◽  
Zhi Sheng Xu ◽  
Jun Li ◽  
Ji Hao Yang

To improve the calculation precision of deformation in prestressed concrete bridge in passenger dedicated line and accurately predict the development of shrinkage and creep in bridge, a universal applicable modified model was put forward in this paper based on ACI 209R(1992) shrinkage and creep model. In the modified model, three influence factors-slump, strength and reinforcement - are corrected. And the modified model results were compared with the experimental results. It shows that the modified model can more accurately predict the development of shrinkage and creep of high-speed railway bridge and better accord with the law of it.


Sign in / Sign up

Export Citation Format

Share Document