Bioremediation of Eutrophic Water by the Controlled Cultivation of Water Hyacinths

Author(s):  
Yingying Zhang ◽  
Zhiyong Zhang ◽  
Zhi Wang ◽  
Haiqin Liu ◽  
Xuezheng Wen ◽  
...  
2019 ◽  
Vol 55 (5) ◽  
pp. 100-106
Author(s):  
Ye. N. Volkova ◽  
V. V. Belyayev ◽  
S. P. Prishlyak ◽  
A. A. Parkhomenko

2009 ◽  
Vol 17 (1) ◽  
pp. 197-202
Author(s):  
Huan-Chun ZHENG ◽  
Qing ZHOU
Keyword(s):  

2010 ◽  
Vol 36 (4) ◽  
pp. 779-786
Author(s):  
Tao DING ◽  
Lin LI ◽  
Liang PENG ◽  
Yan-Xia ZUO ◽  
Li-Rong SONG

1987 ◽  
Vol 19 (10) ◽  
pp. 113-121 ◽  
Author(s):  
C. Simeon ◽  
M. Silhol

The study of thermal wastes from the nuclear plants around Pierrelatte for agricultural, piscicultural, energy and environmental protection purposes resulted in the establishment of a pilot facility as early as 1976. An aquatic macrophyte pilot facility has been operational since 1983 to study the use of water hyacinths from the aspects of energy and ecology. The results obtained suggest that production yields for the 7 month growing period should exceed 60 metric tons (MT) (dry weight) per hectare in a European climate, and that such crops can feasibly be cultivated in temperate regions. The pilot facility is supplied with pisciculture effluent water, making it possible to quantify the stabilization power of the plants. Without primary decantation, with a retention time of 4 days and stabilization with water hyacinths only, the organic matter waste pond surface area required is 3.5 m2/m2 of pisciculture pond. Any primary or secondary facilities will lead to a reduction of these areas. The final decision will depend on the economical optimization of all the wastewater.


1987 ◽  
Vol 19 (12) ◽  
pp. 265-271
Author(s):  
P. R. Thomas ◽  
H. O. Phelps

The investigation was based on two facultative stabilization ponds initially designed to operate in parallel, and now receive wastewater in excess of their capacities from a fast expanding housing estate in the Caribbean Island of Trinidad. Because of the deterioration of the effluent quality relative to acceptable standards, an attempt was made to upgrade the ponds using water hyacinths at the early stages. However, from the results, it was clear that the introduction of water hyacinths in the test pond did not lead to any substantial improvement in the effluent because of the high loading on the pond. Therefore the ponds were modified to operate in series with surface aerators installed in the first pond. Initially, the effluent quality was monitored in terms of total suspended solids, volatile suspended solids, biochemical oxygen demand, faecal coliform bacteria, pH and dissolved oxygen with aeration in the first pond and no aquatic plants in the second pond. Although there was a significant improvement in the effluent quality, the values remained above the standards. As a result, water hyacinths were introduced in the second pond and the effluent quality monitored together with aeration in the first pond. The effluent quality improved with total suspended solids and biochemical oxygen demand values both as low as 10 mg/l in certain months, but additional treatment was needed to reduce faecal conforms.


2020 ◽  
Vol 385 ◽  
pp. 121578 ◽  
Author(s):  
Yingshi Shen ◽  
Yingying Huang ◽  
Jun Hu ◽  
Panpan Li ◽  
Chen Zhang ◽  
...  

2014 ◽  
Vol 707 ◽  
pp. 259-262 ◽  
Author(s):  
Ming Song Wu ◽  
Xin Yang Xu ◽  
Xun Xu ◽  
Yue Ting Zeng ◽  
Jing Nan Zhang ◽  
...  

Algae and bacteria blooms in eutrophication in summer have made the quality of landscape water degradation. Treatment efficiency of potassium monopersulfate compound, a new kind of oxidation reagent, on killing algae and bacteria has been valued and the effect of influence factors, such as dosage, contact time and temperature are also discussed. The results indicated that potassium monopersulfate is appropriate for killing algae and bacteria in landscape water, dosage and contact time are the major influence factors. The contact time should be longer than 20min and the algicidal rate is higher when the temperature is above 20°C.


Sign in / Sign up

Export Citation Format

Share Document