Design and Construction of Camanche Water Transmission Pipeline Project

2017 ◽  
Author(s):  
George Chiu
Author(s):  
Trevor Place ◽  
Greg Sasaki ◽  
Colin Cathrea ◽  
Michael Holm

Strength and leak testing (AKA ‘hydrotesting’, and ‘pressure testing’) of pipeline projects remains a primary method of providing quality assurance on new pipeline construction, and for validating structural integrity of the as-built pipeline [1][2][3]. A myriad of regulations surround these activities to ensure soundness of the pipeline, security of the environment during and after the pressure testing operation, as well as personnel safety during these activities. CAN/CSA Z662-11 now includes important clauses to ensure that the pipeline designer/builder/operator consider the potential corrosive impacts of the pressure test media [4]. This paper briefly discusses some of the standard approaches used in the pipeline industry to address internal corrosion caused by pressure test mediums — which often vary according to the scope of the pipeline project (small versus large diameter, short versus very long pipelines) — as well as the rationale behind these different approaches. Case studies are presented to highlight the importance of considering pressure test medium corrosiveness. A practical strategy addressing the needs of long-distance transmission pipeline operators, involving a post-hydrotest inhibitor rinse, is presented.


Author(s):  
Guodong Zhang ◽  
Xuejun Bai ◽  
Douglas Stalheim ◽  
Shaopo Li ◽  
Wenhua Ding

Along with the increasing demand of oil and natural gas by various world economies, the operating pressure of the pipeline is also increasing. Large diameter heavy wall X80 pipeline steel is widely used in the long distance high pressure oil and gas transportation in China today. In addition, development of X90/X100 has begun in earnest to support the growing energy needs of China. With the wide use of X80 steels, the production technology of this grade has become technically mature in the industry. Shougang Group Qinhuangdao Shouqin Metal Materials Co., Ltd. (SQS) since 2008 has been steadily developing heavier thicknesses and wider plate widths over the years. This development has resulted in stable mass production of X80 pipeline steel plate in heavy wall thicknesses for larger pipe OD applications. The technical specifications of X80 heavy wall thickness and X90/X100 14.8–19.6 mm wall thicknesses, large OD (48″) requiring wide steel plates for the 3rd West-to-East Natural Gas Transmission Pipeline Project and the third line of Kazakhstan-China Main Gas Pipeline (The Middle Asia C Line) and the demonstration X90/X100 line (part of the 3rd West-East Project) in China required changes to the SQS plate mill process design. Considering the technology capability of steelmaking and the plate mill in SQS, a TMCP+OCP (Optimized Cooling Process) was developed to achieve stable X80 and X90/X100 mechanical properties in the steel plates while reducing alloy content. This paper will describe the chemistry, rolling process, microstructure and mechanical properties of X80 pipeline steel plates produced by SQS for 52,000 mT of for the 3rd West-to-East Natural Gas Transmission Pipeline Project and 5,000 mT for the Middle Asia C Line Project along with 1000 tons of 16.3 mm X90/X100 for the 3rd West-East demonstration pipeline. The importance of the slab reheating process and rolling schedule will be discussed in the paper. In addition, the per pass reductions logic used during recrystallized rough rolling, and special emphasis on the reduction of the final roughing pass prior to the intermediate holding (transfer bar) resulting in a fine uniform prior austenite microstructure will be discussed. The optimized cooling (two phase cooling) application after finish rolling guarantees the steady control of the final bainitic microstructure with optimum MA phase for both grades. The plates produced by this process achieved good surface quality, had excellent flatness and mechanical properties. The pipes were produced via the JCOE pipe production process and had favorable forming properties and good weldability. Plate mechanical properties successfully transferred into the required final pipe mechanical properties. The paper will show that the TMCP+OCP produced X80 heavy wall and 16.3 mm X90 wide plates completely meet the technical requirements of the three pipeline projects.


Author(s):  
Qiurong Ma ◽  
Chunyong Huo

Specification of X80 line pipe for 2nd West-East Gas Transmission Pipeline Project has referenced in context to the latest edition of international standards like ISO 3183 and API Spec 5L. Some complementarities have been made to achieve the balance between the safety and economy of the high-pressure gas transmission system, such as in the chemical content, tensile strength, arrest toughness, etc. The line pipe specification was analyzed combining with the properties of the practically manufactured pipe in this paper. It’s shown that the pipe manufactures have established the steel design process for X80 pipes and the pipeline designers have been developing the design method of high-pressure gas pipelines with X80 line pipe. As the collaboration between the pipe manufactures and pipeline designers, X80 line pipes are applicable in 2nd West-East Gas Transmission Pipeline Project commercially.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
K. Hariri Asli ◽  
A. K. Haghi ◽  
H. Hariri Asli ◽  
E. Sabermaash Eshghi

This work defined an Eulerian-based computational model compared with regression of the relationship between the dependent and independent variables for water hammer surge wave in transmission pipeline. The work also mentioned control of Unaccounted-for-Water (UFW) based on the Geography Information System (GIS) for water transmission pipeline. The experimental results of laboratory model and the field test results showed the validity of prediction achieved by computational model.


2011 ◽  
Vol 71-78 ◽  
pp. 631-634
Author(s):  
Ling Bo Dang ◽  
Lei Shun Zhang

An internal supporting structure because of its low cost, construction speed, and high efficiency in the construction of municipal works in the deep foundation pit enjoys a great advantage. In this paper, ZhongYuan West Road, the actual construction of water pipeline project, describes the mechanical characteristics,the design and construction of the internal supporting structure, It is summarized for an internal supporting structure in deep excavation of accumulated experience.


Sign in / Sign up

Export Citation Format

Share Document