Rigid Inclusions Ground Improvement for a New Energy Facility: Design, Construction, and Full-Scale Embankment Load Testing and Results

2019 ◽  
Author(s):  
David Mazzei ◽  
Ken Kniss ◽  
Fathey Elsaid ◽  
Yan Zhang
2021 ◽  
Author(s):  
Jos de Bruijn ◽  
Sander van Alphen

<p>As new energy resources like solar, wind and hydropower are being used more and more over the world, the demand for transport of energy and with that the demand for powerlines is big. Also, in The Netherlands this is the case. TenneT (company responsible for the transport of energy in The Netherlands) had to realise a total of 75 km’s of power lines in one project called Wintrack II. This includes 41 different kind of pole types that carry the conductors. The conductors are carried by so called bipoles, these are conical steel tubes.‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌</p><p>To help TenneT a semi-automatic tooling was made to calculate and to model the different pole types. The poles are modelled with inventor and calculated with different software programs.</p><p>To validate the different calculations and used model’s 3D FEM-calculations are performed as well as full scale tests. Several kinds of calculations and designs are made, especially in steel and concrete. For example, calculations are made on vortex, prestressing of anchors, flange connections and next to that measurements are being performed on full scale poles.</p>


2005 ◽  
Vol 2005 (5) ◽  
pp. 776-786
Author(s):  
Oliver Lawal ◽  
Ludwig Dinkloh ◽  
Bruce Petrik ◽  
David Rose ◽  
John Heywood ◽  
...  

Author(s):  
John D. Reid ◽  
Ronald K. Faller ◽  
Jim C. Holloway ◽  
John R. Rohde ◽  
Dean L. Sicking

For many years, containment for errant racing vehicles traveling on oval speedways has been provided through rigid, concrete containment walls placed around the exterior of the track. However, accident experience has shown that serious injuries and fatalities may occur through vehicular impacts into these nondeformable barriers. Because of these injuries, the Indy Racing League and the Indianapolis Motor Speedway, later joined by the National Association for Stock Car Auto Racing (NASCAR), sponsored the development of a new barrier system by the Midwest Roadside Safety Facility at the University of Nebraska–Lincoln to improve the safety of drivers participating in automobile racing events. Several barrier prototypes were investigated and evaluated using both static and dynamic component testing, computer simulation modeling with LS-DYNA (a nonlinear finite element analysis code), and 20 full-scale vehicle crash tests. The full-scale crash testing program included bogie vehicles, small cars, and a full-size sedan, as well as Indy Racing League open-wheeled cars and NASCAR Winston Cup cars. A combination steel tube skin and foam energy-absorbing barrier system, referred to as the SAFER (steel and foam energy reduction) barrier, was successfully developed. Subsequently, the SAFER barrier was installed at the Indianapolis Motor Speedway in advance of the running of the 2002 Indianapolis 500 race. From the results of the laboratory testing program as well as analysis of the accidents into the SAFER barrier occurring during practice, qualification, and the race, the SAFER barrier has been shown to provide improved safety for drivers impacting the outer walls.


Author(s):  
C. H. Chen ◽  
W. C. Lai ◽  
P. Cordova ◽  
G. G. Deierlein ◽  
K. C. Tsai

2020 ◽  
Vol 265 ◽  
pp. 105437 ◽  
Author(s):  
Sara Amoroso ◽  
Kyle M. Rollins ◽  
Paul Andersen ◽  
Guido Gottardi ◽  
Laura Tonni ◽  
...  

2019 ◽  
Vol 80 (3) ◽  
pp. 418-425 ◽  
Author(s):  
T. Bressani-Ribeiro ◽  
L. A. Chamhum-Silva ◽  
C. A. L. Chernicharo

Abstract There are hundreds of full-scale upflow anaerobic sludge blanket (UASB) reactors in operation in various parts of the tropical world, notably in India and Latin America, Brazil being the holder of the largest park of anaerobic reactors for sewage treatment in the world. Despite the recognized advantages of UASB reactors, there are problems that have prevented their maximum operational performance. Neglecting the existence and delaying the solution of these challenges can jeopardize the important advances made to date, impacting the future of anaerobic technology in Brazil and in other countries. This work aims to evaluate the operational performance of five full-scale UASB reactors in Brazil, taking into account a monitoring period ranging between two and six years. The main observed design, construction, and operational constraints are discussed. Some outlooks for important upcoming developments are also provided, considering that most of the observed drawbacks can be tackled without significant increases on reactor costs.


2000 ◽  
Vol 1736 (1) ◽  
pp. 110-118 ◽  
Author(s):  
Scott A. Ashford ◽  
Kyle M. Rollins ◽  
S. Case Bradford V ◽  
Thomas J. Weaver ◽  
Juan I. Baez

The results presented were developed as part of a larger project analyzing the behavior of full-scale laterally loaded piles in liquefied soil, the first full-scale testing of its kind. Presented here are the results of a series of full-scale tests performed on deep foundations in liquefiable sand, both before and after ground improvement, in which controlled blasting was used to liquefy the soil surrounding the foundations. Data were collected showing the behavior of laterally loaded piles before and after liquefaction. After the installation of stone columns, the tests were repeated. From the results of these tests, it can be concluded that the installation of stone columns can significantly increase the density of the improved ground as indicated by the cone penetration test. Furthermore, it was found that the stone column installation limited the excess pore pressure increase from the controlled blasting and substantially increased the rate of excess pore pressure dissipation. Finally, the stone columns were found to significantly increase the stiffness of the foundation system by more than 2.5 to 3.5 times that in the liquefied soil. This study provides some of the first full-scale quantitative results on the improvement of foundation performance due to stone columns in a liquefiable deposit.


Sign in / Sign up

Export Citation Format

Share Document