Effect of Fines Content on the Shear Behavior of Coal Gangue

IFCEE 2021 ◽  
2021 ◽  
Author(s):  
Mohammed Ashfaq ◽  
M. Heeralal ◽  
Arif Ali Baig Moghal ◽  
Afzal Ali Baig Moghal
Author(s):  
Uk-Gie Kim ◽  
Masayuki Hyodo ◽  
Chikashi Koga ◽  
Rolando P. Orense
Keyword(s):  

2015 ◽  
Vol 30 (2) ◽  
pp. 296-301
Author(s):  
Fatehjit Singh ◽  
Sheldon I. Green
Keyword(s):  

2004 ◽  
Author(s):  
Libo Ren ◽  
Bazle A. Gama ◽  
John W. Gillespie ◽  
Yen Jr. ◽  
Chian-Fong
Keyword(s):  

Author(s):  
Jiwei Zhang ◽  
Jingjing Xu ◽  
Shuaixia Liu ◽  
Baoxiang Gu ◽  
Feng Chen ◽  
...  

Background: Coal gangue was used as a catalyst in heterogeneous Fenton process for the degradation of azo dye and phenol. The influencing factors, such as solution pH gangue concentration and hydrogen peroxide dosage were investigated, and the reaction mechanism between coal gangue and hydrogen peroxide was also discussed. Methods: Experimental results showed that coal gangue has the ability to activate hydrogen peroxide to degrade environmental pollutants in aqueous solution. Under optimal conditions, after 60 minutes of treatment, more than 90.57% of reactive red dye was removed, and the removal efficiency of Chemical Oxygen Demand (COD) up to 72.83%. Results: Both hydroxyl radical and superoxide radical anion participated in the degradation of organic pollutant but hydroxyl radical predominated. Stability tests for coal gangue were also carried out via the continuous degradation experiment and ion leakage analysis. After five times continuous degradation, dye removal rate decreased slightly and the leached Fe was still at very low level (2.24-3.02 mg L-1). The results of Scanning Electron Microscope (SEM), energy dispersive X-Ray Spectrometer (EDS) and X-Ray Powder Diffraction (XRD) indicated that coal gangue catalyst is stable after five times continuous reuse. Conclusion: The progress in this research suggested that coal gangue is a potential nature catalyst for the efficient degradation of organic pollutant in water and wastewater via the Fenton reaction.


2019 ◽  
Vol 118 ◽  
pp. 02011
Author(s):  
Su Pan ◽  
Yu Pengfeng ◽  
Linbo Liu ◽  
Han Jing ◽  
Xiao Shen

The coal as fired, with unidentified characteristics of the coal gangue, was burned on a 300MW circulating fluidized bed unit. The equipment of the coal conveying system was damaged and the boiler operation was unstable. In response to the problems, the coal quality data and storage conditions of the coal were examined and the site was spot-checked to evaluate the coal quality characteristics. At the same time, the typical representative parameters of the coal handling system and boiler operation were selected. According to the analysis of coal quality and coal storage, the coal quality fluctuates greatly and the uniformity of particle size distribution is poor. There is actually the coal gangue with hard texture and hard to grind in the coal pile. The coal gangue will have adverse effects on the fine screening machine, fine crusher and other equipment. After burned this type of coal, the fluidized quality of the boiler bed is degraded to make an impact on the safe and stable operation of the boiler. It is recommended that the coal should be screened and then burned into the furnace to ensure safe and stable operation of the boiler.


2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


Sign in / Sign up

Export Citation Format

Share Document