Effect of Powder Activated Carbon on Class C Fly Ash Modified Fresh Concrete Properties

2021 ◽  
Author(s):  
Sumon Roy ◽  
Zahid Hossain
2019 ◽  
Vol 27 (2) ◽  
pp. 1-8
Author(s):  
Ramamohanrao Pannem ◽  
Padmaja P. Kumar

AbstractBased on the available literature, a simple method was adopted to calculate the packing density of aggregates and thereby reduce their void content by optimising their packing aggregates and by using two different sizes of coarse aggregates and fine aggregates. This study provides an understanding of the way in which the shape of aggregates affects the properties of self-compacting concrete (SCC). The fresh, hardened, and durable properties of SCC with normal and lightweight fly ash coarse aggregates are found at the corresponding age of the curing. Their values were compared with respect to SCC containing normal aggregates. A mix with fly ash aggregates was found to have better fresh concrete properties due to the round shape of the aggregates. After the packing of the aggregates, this mix was found to have better mechanical and durability properties than all the other concrete mixes.


2018 ◽  
Vol 27 (3) ◽  
pp. 328-337
Author(s):  
Dorota Małaszkiewicz ◽  
Daniel Jastrzębski

The article presents the results of research assessing the possibility of making LWSCC from the locally produced sintered fly ash aggregate CERTYD. Two methods of preliminary LWA preparation were applied: pre-soaking with water and coating with a film of cement paste. The following properties of fresh LWSCC were evaluated: slump-flow, time T500 and passing ability using L-Box. Partial replacement of natural sand by fine LW sand (0/0.5 mm) improved filling and passing abilities of fresh concrete, reduced slightly the bulk density, but it resulted in compressive strength loss by 12-18%. In terms of both fresh and hardened concrete properties it is more favorable to use only fine LW sand as natural sand replacement. Considering fresh concrete properties paste impregnation of LW aggregate is more efficient than saturation with water.


2016 ◽  
Vol 249 ◽  
pp. 21-27 ◽  
Author(s):  
Adam Hubáček ◽  
Rudolf Hela

The article deals with theme of high fly ash content concretes intended for long life constructions. Considering the still growing consumption of fly ash in construction concretes it is a live theme in the Czech Republic and abroad as well. The emphasis will be laid namely on characteristics and requirements for fresh concrete intended for construction of these specific concrete constructions. They are for instance waterproof constructions, tunnel linings, concretes for bridge and road constructions etc. Also the hardened concrete properties like compressive strength, resistance to pressure water, durability and further necessary parameters for obtainment of required properties of these concretes will be monitored.


2020 ◽  
Author(s):  
Antonius Agus Bambang Haryanto ◽  
Ari Handono Ramelan ◽  
MTh Sri Budiastuti ◽  
Pranoto

Author(s):  
Farooq Sher ◽  
Sania Zafar Iqbal ◽  
Tahir Rasheed ◽  
Kashif Hanif ◽  
Jasmina Sulejmanović ◽  
...  

2021 ◽  
pp. 413294
Author(s):  
Belal Abu Tarboush ◽  
Farouq S. Mjalli ◽  
Mohammed Abdulhakim Alsaadi ◽  
Mustafa Mohammed Aljumaily

2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
Victoria Ezeagwula ◽  
Precious Igbokwubiri

Abstract Bamboo trees are one of the fastest growing trees in tropical rainforests around the world, they have various uses ranging from construction to fly ash generation used in oil and gas cementing, to development of activated carbon which is one of the latest uses of bamboo trees. This paper focuses on development of activated carbon from bamboo trees for carbon capture and sequestration. The need for improved air quality becomes imperative as the SDG Goal 12 and SDG Goal13 implies. One of the major greenhouse gases is CO2 which accounts for over 80% of greenhouse gases in the environment. Eliminating the greenhouse gases without adding another pollutant to the environment is highly sought after in the 21st century. Bamboo trees are mostly seen as agricultural waste with the advent of scaffolding and other support systems being in the construction industry. Instead of burning bamboo trees or using them for cooking in the local communities which in turn generates CO2 and fly ash, an alternative was considered in this research work, which is the usage of bamboo trees to generate activated, moderately porous and high surface area carbon for extracting CO2 from various CO2 discharge sources atmosphere and for water purification. This paper focuses on the quality testing of activated carbon that can effectively absorb CO2. The porosity, pore volume, bulk volume, and BET surface area were measured. The porosity of the activated carbon is 27%, BET surface area as 1260m²/g. Fixed carbon was 11.7%, Volatility 73%, ash content 1.7%.


Sign in / Sign up

Export Citation Format

Share Document