Carbon Dioxide Sequestration Using Activated Carbon From Agro Waste-Waste Bamboo

2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
Victoria Ezeagwula ◽  
Precious Igbokwubiri

Abstract Bamboo trees are one of the fastest growing trees in tropical rainforests around the world, they have various uses ranging from construction to fly ash generation used in oil and gas cementing, to development of activated carbon which is one of the latest uses of bamboo trees. This paper focuses on development of activated carbon from bamboo trees for carbon capture and sequestration. The need for improved air quality becomes imperative as the SDG Goal 12 and SDG Goal13 implies. One of the major greenhouse gases is CO2 which accounts for over 80% of greenhouse gases in the environment. Eliminating the greenhouse gases without adding another pollutant to the environment is highly sought after in the 21st century. Bamboo trees are mostly seen as agricultural waste with the advent of scaffolding and other support systems being in the construction industry. Instead of burning bamboo trees or using them for cooking in the local communities which in turn generates CO2 and fly ash, an alternative was considered in this research work, which is the usage of bamboo trees to generate activated, moderately porous and high surface area carbon for extracting CO2 from various CO2 discharge sources atmosphere and for water purification. This paper focuses on the quality testing of activated carbon that can effectively absorb CO2. The porosity, pore volume, bulk volume, and BET surface area were measured. The porosity of the activated carbon is 27%, BET surface area as 1260m²/g. Fixed carbon was 11.7%, Volatility 73%, ash content 1.7%.

Holzforschung ◽  
2018 ◽  
Vol 72 (5) ◽  
pp. 367-374 ◽  
Author(s):  
Yuxiang Huang ◽  
Wenji Yu ◽  
Guangjie Zhao

AbstractA novel way to prepare mesoporous activated carbon fibers (ACFs-P) has been developed, while the ACFs-P with high surface area were obtained from liquefied wood by combining polyvinyl butyral (PVB) blending and steam activation. The porosity properties of the new material was investigated by N2adsorption and the Brunauer–Emmett–Teller (BET) surface area was found to be 2710 m2g−1and a pore volume of 1.540 cm3g−1, of which 58.2% was mesoporous with diameters between 3 and 6 nm. ACFs-P had a higher methylene blue (MB) adsorption capacity (962 mg/g) than the PVB-added carbon fibers (CFs-P) and ACFs-P without PVB (ACFs-C). Flexible all-carbon yarn supercapacitors can be produced from ACFs-P as powder or fiber. The fiber approach led to yarn supercapacitors with a less favorable electrochemical performance than the powder based production owing to the poor strength of the fibers. A 10 cm long yarn supercapacitor from the powdered ACFs exhibited a high specific length capacitance of 43 mF cm−1at 2 mV s−1. Yarn supercapacitors showed an excellent mechanical flexibility and its capacitor properties were not diminished after bending or crumpling.


2016 ◽  
Vol 857 ◽  
pp. 475-479 ◽  
Author(s):  
M.S. Mohammed Yahya ◽  
Jeyashelly Andas ◽  
Ghani Zaidi Ab

In this work, mesoporous activated carbon with high surface area was synthesized from swamp taro stalk by single step ZnCl2 activation. The synthesized activated carbon was characterized by Na2S2O3 volumetric method, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM) and N2 adsorption-desorption analyses. Under the single step ZnCl2 activation, the registered iodine number, BET surface area, total pore volume and pore diameter were 1087.57 mgg-1, 1242.26 m2g-1, 0.73cm3g-1 and 3.72 nm respectively with yield of 25.34%. SEM analysis evidenced the well-formation of porous structure. Type IV isotherm with H2 loops obtained from N2-sorption studies indicates the ink bottles shape mesoporous network structure. This research proved the successful conversion of plant waste into high grade activated carbon.


2012 ◽  
Vol 66 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Ş. Gül ◽  
O. Eren ◽  
Ş. Kır ◽  
Y. Önal

The objective of this study is to compare the performances of catalytic ozonation processes of two activated carbons prepared from olive stone (ACOS) and apricot stone (ACAS) with commercial ones (granular activated carbon-GAC and powder activated carbon-PAC) in degradation of reactive azo dye (Reactive Red 195). The optimum conditions (solution pH and amount of catalyst) were investigated by using absorbencies at 532, 220 and 280 nm wavelengths. Pore properties of the activated carbon (AC) such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N2 adsorption. The highest BET surface area carbon (1,275 m2/g) was obtained from ACOS with a particle size of 2.29 nm. After 2 min of catalytic ozonation, decolorization performances of ACOS and ACAS (90.4 and 91.3%, respectively) were better than that of GAC and PAC (84.6 and 81.2%, respectively). Experimental results showed that production of porous ACs with high surface area from olive and apricot stones is feasible in Turkey.


2018 ◽  
Vol 37 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Song Cheng ◽  
Libo Zhang ◽  
Shengzhou Zhang ◽  
Hongying Xia ◽  
Jinhui Peng

AbstractThe spent phenolic resin is as raw material for preparing high surface area activated carbon (HSAAC) by microwave-assisted KOH activation. The effects of microwave power, activation duration and impregnation ratio (IR) on the iodine adsorption capability and yield of HSAAC were investigated. The surface characteristics of HSAAC were characterized by nitrogen adsorption isotherms, FTIR, SEM and TEM. The operating variables were optimized utilizing the response surface methodology (RSM) and were identified to be microwave power of 700 W, activation duration of 15 min and IR of 4, corresponding to a yield of 51.25 % and an iodine number of 2,384 mg/g. The pore structure parameters of the HSAAC, i. e., Brunauer–Emmett–Teller (BET) surface area, total pore volume, and average pore diameter were estimated to be 4,269 m2/g, 2.396 ml/g and 2.25 nm, respectively, under optimum conditions. The findings strongly support the feasibility of microwave-assisted KOH activation for preparation of HSAAC from spent phenolic resin.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2829
Author(s):  
Zhongzhi Yang ◽  
Roland Gleisner ◽  
Doreen H. Mann ◽  
Junming Xu ◽  
Jianchun Jiang ◽  
...  

Activated carbon (AC) with a very high surface area of over 2000 m2/g was produced from low sulfur acid hydrotropic lignin (AHL) from poplar wood using H3PO4 at a moderate temperature of 450 °C (AHL-AC6). ACs with similar surface areas were also obtained under the same activation condition from commercial hardwood alkali lignin and lignosulfonate. Initial evaluation of AC performance was carried out using nitrogen adsorption-desorption and dye adsorption. AHL-AC6 exhibited the best specific surface area and dye adsorption performance. Furthermore, the adsorption results of congo red (CR) and methylene blue (MB) showed AHL-AC6 had greater adsorption capacity than those reported in literature. The dye adsorption data fit to the Langmuir model well. The fitting parameter suggests the adsorption is nearly strong and near irreversible, especially for MB. The present study for the first time provided a procedure for producing AC from lignin with Brunauer–Emmett–Teller (BET) surface area >2000 m2/g using low cost and low environmental impact H3PO4 at moderate temperatures.


2013 ◽  
Vol 47 (11) ◽  
pp. 5843-5850 ◽  
Author(s):  
Tamilselvan Sakthivel ◽  
David L. Reid ◽  
Ian Goldstein ◽  
Larry Hench ◽  
Sudipta Seal

ChemInform ◽  
2010 ◽  
Vol 33 (48) ◽  
pp. no-no
Author(s):  
Manfred Schwickardi ◽  
Thorsten Johann ◽  
Wolfgang Schmidt ◽  
Ferdi Schueth

Sign in / Sign up

Export Citation Format

Share Document