A Schematization of Onshore-Offshore Transport

Author(s):  
D. H. Swart
Keyword(s):  
2014 ◽  
Vol 11 (9) ◽  
pp. 13515-13532
Author(s):  
F. Liu ◽  
S. Tang ◽  
C. Chen

Abstract. High-resolution ocean color observation offers an opportunity to investigate the oceanic small-scale processes. In this study, The Medium Resolution Imaging Spectrometer (MERIS) daily 300 m data are used to study small-scale processes in the western South China Sea. It is indicated that the cyclonic eddies with horizontal scales of the order of 10 km are frequently observed during upwelling season of each year over 2004–2009. These small-scale eddies are generated in the vicinity of the southern front of the cold tongue, and then propagate eastward with a speed of approximately 12 cm s−1. This propagation speed is consistent with the velocity of the western boundary current. As a result, the small-scale eddies keep rotating high levels of the phytoplankton away from the coastal areas, resulting in the accumulation of phytoplankton in the interior of the eddies. The generation of the small-scale eddies may be associated with strengthening of the relative movement between the rotation speed of the anticylconic mesoscale eddies and the offshore transport. With the increases of the normalized rotation speed of the anticyclonic mesoscale eddies relative to the offshore transport, the offshore current become meander under the impacts of the anticyclonic mesoscale eddies. The meandered cold tongue and instability front may stimulate the generation of the small-scale eddies. Unidirectional uniform wind along cold tongue may also contribute to the formation of the small-scale eddies.


2017 ◽  
Vol 14 (13) ◽  
pp. 3337-3369 ◽  
Author(s):  
Elisa Lovecchio ◽  
Nicolas Gruber ◽  
Matthias Münnich ◽  
Zouhair Lachkar

Abstract. A compilation of measurements of net community production (NCP) in the upper waters of the eastern subtropical North Atlantic had suggested net heterotrophic conditions, purportedly supported by the lateral export of organic carbon from the adjacent, highly productive Canary Upwelling System (CanUS). Here, we quantify and assess this lateral export using the Regional Ocean Modeling System (ROMS) coupled to a nutrient, phytoplankton, zooplankton, and detritus (NPZD) ecosystem model. We employ a new Atlantic telescopic grid with a strong refinement towards the northwestern African shelf to combine an eddy-resolving resolution in the CanUS with a full Atlantic basin perspective. Our climatologically forced simulation reveals an intense offshore flux of organic carbon that transports about 19 Tg C yr−1 away from the nearshore 100 km over the whole CanUS, amounting to more than a third of the NCP in this region. The offshore transport extends beyond 1500 km into the subtropical North Atlantic, adding organic carbon along the way to the upper 100 m at rates of between 8 and 34 % of the alongshore average NCP as a function of offshore distance. Although the divergence of this lateral export of organic carbon enhances local respiration, the upper 100 m layer in our model remains net autotrophic in the entire eastern subtropical North Atlantic. However, the vertical export of this organic carbon and its subsequent remineralization at depth makes the vertically integrated NCP strongly negative throughout this region, with the exception of a narrow band along the northwestern African shelf. The magnitude and efficiency of the lateral export varies substantially between the different subregions. In particular, the central coast near Cape Blanc is particularly efficient in collecting organic carbon on the shelf and subsequently transporting it offshore. In this central subregion, the offshore transport adds as much organic carbon as nearly 60 % of the local NCP to the upper 100 m, giving rise to a sharp peak of offshore respiration that extends to the middle of the gyre. Our modeled offshore transport of organic carbon is likely a lower-bound estimate due to our lack of full consideration of the contribution of dissolved organic carbon and that of particulate organic carbon stemming from the resuspension of sediments. But even in the absence of these contributions, our results emphasize the fundamental role of the lateral redistribution of the organic carbon for the maintenance of the heterotrophic activity in the open sea.


2005 ◽  
Vol 2 (2) ◽  
pp. 105-127 ◽  
Author(s):  
E. Mason ◽  
A. M. P. Santos ◽  
Á J. Peliz

Abstract. Wind speed data obtained from the National Centers for Environmental Prediction (NCEP) Reanalysis project are used to construct winter (November–March) wind indices for the western Iberian Peninsula. The data used represent a 2.5&deg square area, centred at 41.0&deg N, 9.4&deg W, over the period 1948-2003. The NCEP data are well correlated with a time-series (1980–2001) of wind measurements from the Cape Carvoeiro lighthouse on the western Portuguese coast (39.4&deg N, 9.4&deg W). The new indices, of which there are four corresponding to northerlies, easterlies, southerlies and westerlies, constitute measures of numbers of significant wind event days, where a significant wind event is defined to be 4 or more consecutive days of wind speeds exceeding 4 m s-1. Results show both intra- and inter-annual variations in the numbers of significant wind event days, as well as clear decadal trends. A comparison between a hybrid index, composed of the numbers of significant northerly and easterly wind event days - both promote offshore transport, which is thought to have a negative impact on pelagic fish recruitment - and western Iberian sardine catch data, reveal an extensive period of significant negative correlation. The relationship over the most recent period, ~1999–2000, is unclear.


2015 ◽  
Vol 45 (1) ◽  
pp. 294-312 ◽  
Author(s):  
Jessica Benthuysen ◽  
Leif N. Thomas ◽  
Steven J. Lentz

AbstractModel analyses of an alongshelf flow over a continental shelf and slope reveal upwelling near the shelf break. A stratified, initially uniform, alongshelf flow undergoes a rapid adjustment with notable differences onshore and offshore of the shelf break. Over the shelf, a bottom boundary layer and an offshore bottom Ekman transport develop within an inertial period. Over the slope, the bottom offshore transport is reduced from the shelf’s bottom transport by two processes. First, advection of buoyancy downslope induces vertical mixing, destratifying, and thickening the bottom boundary layer. The downward-tilting isopycnals reduce the geostrophic speed near the bottom. The reduced bottom stress weakens the offshore Ekman transport, a process known as buoyancy shutdown of the Ekman transport. Second, the thickening bottom boundary layer and weakening near-bottom speeds are balanced by an upslope ageostrophic transport. The convergence in the bottom transport induces adiabatic upwelling offshore of the shelf break. For a time period after the initial adjustment, scalings are identified for the upwelling speed and the length scale over which it occurs. Numerical experiments are used to test the scalings for a range of initial speeds and stratifications. Upwelling occurs within an inertial period, reaching values of up to 10 m day−1 within 2 to 7 km offshore of the shelf break. Upwelling drives an interior secondary circulation that accelerates the alongshelf flow over the slope, forming a shelfbreak jet. The model results are compared with upwelling estimates from other models and observations near the Middle Atlantic Bight shelf break.


2016 ◽  
Vol Special edition (1) ◽  
pp. 81-99
Author(s):  
Neven Hadžić ◽  
Marko Tomić ◽  
Nikola Vladimir ◽  
Ivo Senjanović

Mega-Floating Airports (MFA) are unique and complex offshore transport system components that emerged as a consequence of tremendous land price increase in the vicinity of very large coastal cities. An overview of MFAs design and production aspects is presented within this paper including design concept, model tests and full scale measurement, air transport analysis, infrastructure, main particulars and structure, wave breaker, hydroelastic analysis due to wave load and airplane moving mass, mooring analysis, production technology and environmental aspects. MFA dynamic response due to airplane load is emphasized as the most challenging problem. Theoretical outline as well as a realistic illustrative numerical example are presented.


1974 ◽  
Vol 1 (14) ◽  
pp. 51 ◽  
Author(s):  
D.H. Swart

The investigation reported herein covers two aspects of the schematization of coastal processes on sandy beaches in a direction perpendicular to the coastline, viz.: (1) the prediction of equilibrium beach profiles and (2) the corresponding offshore sediment transport due to wave action. A physically-based schematic model of the onshore-offshore profile development was tested on available small-scale and full-scale model tests and physically-based empirical relationships were derived to enable the application of the model to both small-scale and prototype conditions.


Sign in / Sign up

Export Citation Format

Share Document