Analysis of Dynamic Response of Deck Pavement for Large-span Steel Bridge

Author(s):  
Tuanjie Chen ◽  
Zhendong Qian ◽  
Wei Huang
2010 ◽  
Vol 156-157 ◽  
pp. 677-677

This paper has been published in Advanced Materials Research Volumes 148 - 149, pp 544 http://www.scientific.net/AMR.148-149.544


2010 ◽  
Vol 148-149 ◽  
pp. 544-547
Author(s):  
Xun Qian Xu ◽  
Ye Yuan Ma ◽  
Guo Qing Wu ◽  
Xiu Mei Gao

Basing on the coupled vibration theory, dynamic behavior of steel bridge deck thin surfacing under rand moving vehicles is studied. A three-dimensional coupled model is carried out for the steel bridges deck thin surfacing and vehicle. A method based on modal superposition and state space technique is developed to solve dynamic response generated by vehicle-surfacing interaction. The dynamic responses of an actual steel bridge deck thin surfacing are studied. The results show that adding epoxy asphalt as a sub coat can improve interface adhesion strength, which would be designed as the interface layer of steel deck thin surfacing.


2015 ◽  
Vol 777 ◽  
pp. 23-26
Author(s):  
Xing Zi Jiao ◽  
Yong Bo Shao

This study presents finite element analyses for a special steel bridge under the action an actual seismic wave. The maximum stress and the maximum deflection of the bridge are calculated based on the dynamic analyses. It is found that the bracing system and the beams between the two columns at the end of the bracing system are the critical members in the steel bridge under seismic action. The maximum displacement of the steel bridge is located at the overhang beams at the bridge end. However, the dynamic response is different when the seismic wave is input in different directions. Based on the numerical results, it is found that the special steel bridge is safe under the seismic action.


ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 4283-4292 ◽  
Author(s):  
Yushu Liu ◽  
Guobiao Lou ◽  
Xiaochen Ju ◽  
Xiaoguang Liu

1999 ◽  
Vol 2 ◽  
pp. 515-521
Author(s):  
Osamu KURIBARA ◽  
Masatoshi NAKAZAWA ◽  
Satoshi ANDO ◽  
Tetsuo IWAKUMA

2017 ◽  
Vol 22 (10) ◽  
pp. 06017002 ◽  
Author(s):  
Alireza Sanaeiha ◽  
Mohammad Rahimian ◽  
Mohammad Sadegh Marefat
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2397
Author(s):  
Rui Pan ◽  
Baofeng Zheng ◽  
Ying Qin

Nowadays, it is common to see large public buildings, e.g., stadiums, with some equipment or substructure suspended from the center of the roof. These substructures will tend to be larger and heavier the more gear is needed, which may have negative impacts on the dynamic performance of the roof structures. In this paper, to explore the dynamic response of a large-span roof structure with a suspended substructure, a real structure model is simplified into a two-degrees-of-freedom system. The essential consideration of nonlinear vibration is elaborated in the equations of motions. Approximate analytical solutions for free and forced vibrations are derived using perturbation methods, while numerical analysis is carried out to validate the solutions. The ratio of linear to nonlinear amplitude is proposed to represent the nonlinear effect of the primary structure, and the nonlinear effect, varying with structural parameters of frequency ratio, mass ratio, excitation ratio, and external force to the primary structure, is investigated. It is shown that internal resonance occurs when the structural frequency ratio is close to 1:2 and that secondary resonance takes place due to certain external excitations; internal resonance and secondary resonance will magnify the amplitude of the primary structure during vibration. Finally, a case of a designed practical dome with a suspended substructure is studied to verify the outcomes from the above research. According to these findings, some design proposals for this type of structure are provided.


Sign in / Sign up

Export Citation Format

Share Document