scholarly journals A Study on Nonlinear Dynamic Response of the Large-Span Roof Structure with Suspended Substructure

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2397
Author(s):  
Rui Pan ◽  
Baofeng Zheng ◽  
Ying Qin

Nowadays, it is common to see large public buildings, e.g., stadiums, with some equipment or substructure suspended from the center of the roof. These substructures will tend to be larger and heavier the more gear is needed, which may have negative impacts on the dynamic performance of the roof structures. In this paper, to explore the dynamic response of a large-span roof structure with a suspended substructure, a real structure model is simplified into a two-degrees-of-freedom system. The essential consideration of nonlinear vibration is elaborated in the equations of motions. Approximate analytical solutions for free and forced vibrations are derived using perturbation methods, while numerical analysis is carried out to validate the solutions. The ratio of linear to nonlinear amplitude is proposed to represent the nonlinear effect of the primary structure, and the nonlinear effect, varying with structural parameters of frequency ratio, mass ratio, excitation ratio, and external force to the primary structure, is investigated. It is shown that internal resonance occurs when the structural frequency ratio is close to 1:2 and that secondary resonance takes place due to certain external excitations; internal resonance and secondary resonance will magnify the amplitude of the primary structure during vibration. Finally, a case of a designed practical dome with a suspended substructure is studied to verify the outcomes from the above research. According to these findings, some design proposals for this type of structure are provided.

Author(s):  
Andrew J. Dick ◽  
Aaron Atzil ◽  
Satish Nagarajaiah

Vibration attenuation devices are used to reduce the vibrations of various mechanical systems and structures. In this work, an analytical method is proposed to provide the means to investigate the influence of system parameters on the dynamic response of a system. The method of multiple scales is used to calculate an approximate broadband solution for a two degree-of-freedom system consisting of a linear primary structure and a nonlinear tuned mass damper. The model is decoupled, approximate analytical solutions are calculated, and then they are combined to produce the desired frequency-response information. The approach is initially applied to a linear two degree-of-freedom system in order to verify its performance. The approach is then applied to the nonlinear system in order to study how varying the values of parameters associated with the nonlinear absorber affect its ability to attenuate the response of the primary structure.


2011 ◽  
Vol 71-78 ◽  
pp. 666-672
Author(s):  
Wen Bo Sun ◽  
Qing Xiang Li ◽  
Han Xiang Chen ◽  
Wei Jian Zhou

In this paper, the system and the design philosophy of wheel-spoke cable-membrane structure of Baoan Stadium is introduced firstly. And then the study of wind tunnel test on 1:250 scale model is mainly presented, together with the numerical calculation of the wind dynamic response. Finally, the wind-resistant design of the roof structure based on the results of wind tunnel test and the foreign design codes is generally introduced.


2013 ◽  
Vol 405-408 ◽  
pp. 1022-1027
Author(s):  
Zi Fen Fang ◽  
Zhi Qiang Zhang ◽  
Fei Liu

The isolation of large-span Steel Truss Roof structure is developed on the basis of base isolation. The isolation of large-span Steel Truss Roof structure is to limit the transmission of wind load effect to the substructure. Based on the engineering background, we mainly discuss using rubber bearing isolation structure wind load effects. This paper will explains and demonstrates the isolation mechanism of Large-span Steel Truss Structure,and than test and verify isolation effect by Calculating through the analysis of wind tunnel tests conducted on the Yancheng financial services center, which the steel truss roof isolation bearings for wind load effect isolation effect.


Author(s):  
Anna Warminska ◽  
Jerzy Warminski ◽  
Emil Manoach

Large amplitude vibrations of a Timoshenko beam under an influence of thermal and mechanical loadings are studied in the paper. The structural parameters of the beam are considered enabling internal resonance conditions. Moreover, it is assumed that the beam gets instantly temperature which is distributed along its length and thickness. The mathematical model represented by a set of partial differential equations takes into account coupled mechanical and thermal fields. The problem is transformed to a set of ODEs by the Galerkin method and three modes of a simply supported beam at both ends are studied. The effect of temperature on internal and external resonances is analysed on the basis of the proposed reduced model.


2011 ◽  
Vol 284-286 ◽  
pp. 517-522
Author(s):  
Wei Guo Yang ◽  
Yao Feng Wang

Wind loads are key considerations in the structural design of steel roof structures, especially for large span ones. The analysis of wind loads on large span steel roof structure (LSSRS) requires large amounts of calculations. Due to combined effects of horizontal and vertical winds, the wind induced vibrations of LSSRS are analyzed with the frequency domain method as the first application of the method for the analysis of wind responses of LSSRS. A program is developed to analyze the wind-induced vibrations due to a combination of wind vibration modes. The program, which predicts the wind vibration coefficient and wind pressure acting on the LSSRS, is designed with input and output interfaces to other finite element software, resulting in preferably solving the wind load analytical problem in the design of LSSRS. The effectiveness and accuracy of the proposed method and the program are verified by numerical analyses of practical projects.


2011 ◽  
Vol 243-249 ◽  
pp. 6083-6086 ◽  
Author(s):  
Xiao Bei Wang ◽  
Zhen Hua Liu ◽  
Ming Gong ◽  
Lian Fen Weng

Large-span hybrid structure of suspendome with stacked arch is applied into steel roof of Chiping Gymnasium. The construction of this new type structure system is difficult according to structure characteristics such as its large-span stacked arch, high installation altitude, lattice shell installation, prestressed cable tension, and tight construction period. Temporary support frame, segment lifting and high altitude splicing construction method is adopted to install the stacked arch, and total support, high-altitude spread operation method is used to install lattice dome. A spatial structural analysis is conducted on the supporting system, and the finite element software is adopted to simulate and analyze the installation process of the steel structure roof system. At the same time, stress and deformation of the roof structure are monitored by precise instruments and equipments. As the result, construction safety and quality are guaranteed.


Sign in / Sign up

Export Citation Format

Share Document