Dynamic Response of the Steel Bridge Deck Thin Surfacing due to Vehicle Load

2010 ◽  
Vol 148-149 ◽  
pp. 544-547
Author(s):  
Xun Qian Xu ◽  
Ye Yuan Ma ◽  
Guo Qing Wu ◽  
Xiu Mei Gao

Basing on the coupled vibration theory, dynamic behavior of steel bridge deck thin surfacing under rand moving vehicles is studied. A three-dimensional coupled model is carried out for the steel bridges deck thin surfacing and vehicle. A method based on modal superposition and state space technique is developed to solve dynamic response generated by vehicle-surfacing interaction. The dynamic responses of an actual steel bridge deck thin surfacing are studied. The results show that adding epoxy asphalt as a sub coat can improve interface adhesion strength, which would be designed as the interface layer of steel deck thin surfacing.

2010 ◽  
Vol 156-157 ◽  
pp. 677-677

This paper has been published in Advanced Materials Research Volumes 148 - 149, pp 544 http://www.scientific.net/AMR.148-149.544


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chenchen Zhang ◽  
Leilei Chen ◽  
Gang Liu ◽  
Zhendong Qian

Recently, the multitower suspension bridge has been widely used in long-span bridge construction. However, the dynamic response of the deck and pavement system of the multitower suspension bridge under random vehicle load is still not clear, which is of great significance to steel-bridge deck pavement (SBDP) design and construction. To reveal the mechanical mechanism of the steel-bridge deck pavement of the multitower suspension bridge under traffic load, this paper analyzed the mechanical response of the pavement based on case study through the multiscale numerical approach and experimental program. Firstly, considering the full-bridge effect of the multitower suspension bridge, the finite element model (FEM) of the SBDP composite structure was established to obtain key girder segments. Secondly, the influences of pavement layer, bending moment and torque, random traffic flow, and bridge structure on the stress of the girder segment were analyzed. Thirdly, the mechanical response of the pavement layer to the orthotropic plate under random vehicle load was studied. Finally, a full-scale model of the experimental program was established to verify the numerical results. Results show that (1) the pavement layer reduced the stress of the steel-box girder roof by about 10%. In the case of adverse bending moment and torque, the longitudinal and transverse stresses of the pavement layer were mainly concentrated in the stress concentration area near the suspender. Under the action of the random vehicle flow, the stress response of the pavement layer was increased by 40% compared with that under standard load. (2) Three-tower and two-span bridge structures have a great influence on the vertical deformation of the pavement layer under the action of vehicle load. Thus, the pavement material needs to have great deformation capacity. (3) The full-bridge effect has a significant influence on the longitudinal stress of the local orthotropic plate, but a small influence on the transverse stress. (4) There is a good correlation between the experimental measurement results of the full-size model and that of the numerical model. The research results can provide guidance for SBDP design and construction of the multitower suspension bridge.


2015 ◽  
Vol 23 (9) ◽  
pp. 1548-1568 ◽  
Author(s):  
Shao Renping ◽  
Purong Jia ◽  
Xiankun Qi

According to the actual working condition of the gear, the supporting gear shaft is treated as an elastic support. Its impact on the gear body vibration is considered and investigated and the dynamic response of elastic teeth and gear body is analyzed. On this basis, the gear body is considered as a three-dimensional elastic disc and the gear teeth are treated as an elastic cantilever beam. Under the conditions of the elastic boundary (support shaft), combining to the elastic disk and elastic teeth, the influence of three-dimensional elastic discs on the meshing tooth response under an elastic boundary condition is also included. A dynamic model of the gear support system and calculated model of the gear tooth response are then established. The inherent characteristics of the gear support system and dynamics response of the meshing tooth are presented and simulated. It was shown by the results that it is correct to use the elastic support condition to analyze the gear support system. Based on the above three-dimensional elastic dynamics analysis, this paper set up a dynamics coupling model of a cracked gear structure support system that considered the influence of a three-dimensional elastic disc on a cracked meshing tooth under elastic conditions. It discusses the dynamic characteristic of the cracked gear structure system and coupling dynamic response of the meshing tooth, offering a three-dimensional elastic body model of the tooth root crack and pitch circle crack with different sizes, conducting the three-dimensional elastic dynamic analysis to the faulty crack. ANSYS was employed to carry out dynamic responses, as well as to simulate the acoustic field radiation orientation of a three-dimensional elastic crack body at the tooth root crack and pitch circle with different sizes.


2013 ◽  
Vol 07 (03) ◽  
pp. 1350020 ◽  
Author(s):  
C. S. CAI ◽  
WEI ZHANG ◽  
XIANZHI LIU ◽  
WEI PENG ◽  
S. R. CHEN ◽  
...  

Under strong winds, bridges may exhibit large dynamic responses. Wind may also endanger the safety of moving vehicles on the roadways as well as on bridges. For regular aerodynamic study of long-span bridges, traffic loads are not typically considered, assuming that bridges will be closed to traffic at high wind speeds. Therefore, bridges are usually tested in wind tunnels or analyzed numerically without considering moving vehicles on them. However, there are numerous possible scenarios under which vehicles may still be on the bridge when higher wind speeds occur. These scenarios include unexpected increase in hurricane forward speed or intensity, evacuation traffic gridlock, accidents/stalled vehicles or rainfall flooding blocking the road ahead, etc. Wind, together with vehicles, will also cause serviceability and bridge fatigue damage issues. The present study will present the framework of wind–vehicle–bridge interaction analysis and its applications, developed in the last decade by the authors' group, focused on the vehicle and bridge safety issues. It consists of the following five parts: (1) A three dimensional finite element analysis framework considering the interaction of wind, bridge and vehicles; (2) experimental facilities development and studies for both static and aerodynamic tests of bridge section models and vehicles; (3) Computation fluid dynamic (CFD) prediction of loading on vehicles; (4) performance evaluation of vehicle safety and bridge fatigue; and (5) bridge vibration mitigations. Case study will also be presented and future research needs are discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
An-Ping Peng ◽  
Han-Cheng Dan ◽  
Dong Yang

Vibratory compaction of bridge deck pavement impacts the structural integrity of bridges to certain degrees. In this study, we analyzed the dynamic response of different types of concrete-beam bridges (continuous beam and simply supported beam) with different cross-sectional designs (T-beam and hollow-slab beam) under vibratory compaction of bridge deck asphalt pavement. The dynamic response patterns of the dynamic deformation and acceleration of bridges under pavement compaction were obtained by performing a series of field experiments and a three-dimensional finite element simulation. Based on the finite element model, the dynamic responses of bridge structures with different spans and cross-sectional designs under different working conditions of vibratory compaction were analyzed. The use of different vibration parameters for different bridge structures was proposed to safeguard their structural safety and reliability.


2021 ◽  
pp. 095745652199986
Author(s):  
Wenhao Chang ◽  
Xiaopei Cai ◽  
Qihao Wang

The steel-spring floating slab track (SSFST) is a low-stiffness structure, sensitive to the vehicle loads. Due to the coupling effect of the superposition of adjacent bogies, it is difficult for conventional single-carriage models to meet the simulation requirements. To find a balance between computation efficiency and authenticity of analytical model results, the influence of carriage number on SSFST should be studied. Based on the finite element method and multi-body dynamics, a refined three-dimensional coupled model of multi-carriage-SSFST-tunnel was established. The difference in the dynamic response of the SSFST between single-carriage and multi-carriage models was analyzed and compared with the measured data. The field test results show that structural displacements and accelerations under the two-carriage model are much closer to the measured data. The dynamic model analysis results show that the maximum displacement of the rail and SSFST in the midspan of the slab increase by 0.48 mm and 0.34 mm under the multi-carriage model, and the vibration reduction effectiveness increases by 1.4–2.0 dB. Dynamic responses of the rail and SSFST show minor differences under the two-carriage and three-carriage models. The article is expected to provide a reference for the theoretical research, design, and layout optimization of subway SSFST.


2013 ◽  
Vol 457-458 ◽  
pp. 1558-1561
Author(s):  
Feng Gao ◽  
Dao Kai Wei ◽  
Xiao Ping Wang ◽  
Guo Zhi Tian

It will stir up the vibration of asphalt deck surfacing when the Vehicles pass through the steel bridge deck. The research of the moving vehicles vibration characteristics of the deck surfacing has been one enthusiastic concern. By the time history analysis method of finite element, the paper studied the dynamic response of the deck surfacing in different speeds of vehicles, and then analyzed the effect of the deck surfacing by different speeds.


2014 ◽  
Vol 488-489 ◽  
pp. 433-436 ◽  
Author(s):  
Si Te Wu ◽  
Ping Ming Huang ◽  
Juan Wang

According to the compaction mechanism of oscillatory roller, a simulation model for oscillatory compaction implementation in bridge deck pavement was constructed via ANSYS. Contrast analysis on dynamic responses to bridge structure when vibratory roller or oscillatory roller is in operation shows that dynamic response of oscillatory roller is much smaller than that of vibratory roller under approximate compaction degrees. In this way, disturbance for the bridge structure can be reduced greatly, risk of bridge deck pavement construction can be decreased, and service life of the bridge can be increased effectively.


2016 ◽  
Vol 24 (11) ◽  
pp. 2201-2220 ◽  
Author(s):  
Hao Zhu ◽  
Yumei Hu ◽  
WD Zhu

A typical engine front end accessory drive system (FEADS) is mathematically modeled through Hamilton’s principle and Newton’s second law. In this model, the belt’s flexural rigidity and pulley’s eccentricity are considered. Eccentricities of the pulleys are introduced into governing motion equations of the belt spans through the boundary conditions and then transformed to external forces acting on the belt spans. Vibration modes and natural frequencies of the FEADS are calculated by the state-space technique of the complex mode theory. Dynamic responses of the FEADS at different rotational rates of the crankshaft are calculated by solving the spatially discretized governing equations obtained by Galerkin method. The modeling and solution methods are formulated and programmed in a general purposed code. The study shows that the typical resonance and beat phenomenon happen in a certain portion of the belt spans at a certain rotational rate by the excitations of the pulley’s eccentricity. According to the modal analysis and dynamic response analysis, an optimization method based on a genetic algorithm is proposed. By comparing the vibration amplitudes of belt spans before and after optimization at different rotational rates, this optimization method is verified to be effective in reducing transverse vibrations of the belt spans.


Sign in / Sign up

Export Citation Format

Share Document