Glass transition relaxation and fragility in the molecular glass forming m-toluidine: A study by thermally stimulated depolarization currents

2000 ◽  
Vol 113 (8) ◽  
pp. 3204-3211 ◽  
Author(s):  
Natália T. Correia ◽  
Cristina Alvarez ◽  
Joaquim J. Moura Ramos ◽  
Marc Descamps
1997 ◽  
Vol 7 (11) ◽  
pp. 1635-1650 ◽  
Author(s):  
A. Faivre ◽  
L. David ◽  
J. Perez

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 954
Author(s):  
Xavier Monnier ◽  
Sara Marina ◽  
Xabier Lopez de Pariza ◽  
Haritz Sardón ◽  
Jaime Martin ◽  
...  

The present work aims to provide insights on recent findings indicating the presence of multiple equilibration mechanisms in physical aging of glasses. To this aim, we have investigated a glass forming polyether, poly(1-4 cyclohexane di-methanol) (PCDM), by following the evolution of the enthalpic state during physical aging by fast scanning calorimetry (FSC). The main results of our study indicate that physical aging persists at temperatures way below the glass transition temperature and, in a narrow temperature range, is characterized by a two steps evolution of the enthalpic state. Altogether, our results indicate that the simple old-standing view of physical aging as triggered by the α relaxation does not hold true when aging is carried out deep in the glassy state.


2000 ◽  
Vol 644 ◽  
Author(s):  
Y. Li

AbstractOnset temperature, Tm and offset temperature (liquidus) Tl of melting of a series of bulk glass forming alloys based on La, Mg, and Pd have been measured by studying systematically the melting behaviour of these alloys using DTA or DSC. Bulk metallic glass formation has been found to be most effective at or near their eutectic points and less effective for off-eutectic alloys. Reduced glass transition temperature Trg given by Tg/Tl is found to show a stronger correlation with critical cooling rate or critical section thickness for glass formation than Trg given by Tg/Tm.


1996 ◽  
Vol 455 ◽  
Author(s):  
Ralf Busch ◽  
Andreas Masuhr ◽  
Eric Bakke ◽  
William L. Johnson

ABSTRACTThe viscosities of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 and the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass forming liquids was determined from the melting point down to the glass transition in the entire temperature range of the supercooled liquid. The temperature dependence of the viscosity in the supercooled liquid obeys the Vogel-Fulcher-Tammann (VFT) relation. The fragility index D is about 20 for both alloys and the ratio between glass transition temperature and VFT temperature is found to be 1.5. A comparison with other glass forming systems shows that these bulk metallic glass formers are strong liquids comparable to sodium silicate glass. Furthermore, they are the strongest among metallic glass forming liquids. This behavior is a main contributing factor to the glass forming ability since it implicates a higher viscosity from the melting point down to the glass transition compared to other metallic liquids. Thus, the kinetics in the supercooled liquid is sluggish and yields a low critical cooling rate for glass formation. The relaxation behavior in the glass transition region of the alloys is consistent with their strong glassy nature as reflected by a stretching exponent that is close to 0.8. The microscopic origin of the strong liquid behavior of bulk metallic glass formers is discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michela Romanini ◽  
Roberto Macovez ◽  
Maria Barrio ◽  
Josep Lluís Tamarit

AbstractWe employ temperature- and pressure-dependent dielectric spectroscopy, as well as differential scanning calorimetry, to characterize benzophenone and the singly-substituted ortho-bromobenzophenone derivative in the liquid and glass states, and analyze the results in terms of the molecular conformations reported for these molecules. Despite the significantly higher mass of the brominated derivative, its dynamic and calorimetric glass transition temperatures are only ten degrees higher than those of benzophenone. The kinetic fragility index of the halogenated molecule is lower than that of the parent compound, and is found to decrease with increasing pressure. By a detailed analysis of the dielectric loss spectra, we provide evidence for the existence of a Johari–Goldstein (JG) relaxation in both compounds, thus settling the controversy concerning the possible lack of a JG process in benzophenone and confirming the universality of this dielectric loss feature in molecular glass-formers. Both compounds also display an intramolecular relaxation, whose characteristic timescale appears to be correlated with that of the cooperative structural relaxation associated with the glass transition. The limited molecular flexibility of ortho-bromobenzophenone allows identifying the intramolecular relaxation as the inter-enantiomeric conversion between two isoenergetic conformers of opposite chirality, which only differ in the sign of the angle between the brominated aryl ring and the coplanar phenyl-ketone subunit. The observation by dielectric spectroscopy of a similar relaxation also in liquid benzophenone indicates that the inter-enantiomer conversion between the two isoenergetic helicoidal ground-state conformers of opposite chirality occurs via a transition state characterized by a coplanar phenyl-ketone moiety.


1995 ◽  
Vol 407 ◽  
Author(s):  
B. Rufflé ◽  
S. Beaufils ◽  
Y. Délugeard ◽  
G. Coddens ◽  
J. Etrillard ◽  
...  

ABSTRACTNew experimental results obtained with various techniques on a less-studied glass-forming system are presented. At low frequency, a secondary βslow-process, decoupled from the viscous flow, is observed by 3 1P NMR. Raman scattering spectra and coherent neutron scattering spectra has been obtained in wide frequency and temperature ranges showing the same qualitative features for the Boson peak while the quasielastic contribution seems to differ markedly.


2004 ◽  
Vol 19 (2) ◽  
pp. 427-428 ◽  
Author(s):  
Z.P. Lu ◽  
C.T. Liu

A new Mg-based bulk amorphous alloy (i.e., Mg65Cu25Gd10) has successfully been developed by Men and Kim [H. Men and D.H. Kim, J. Mater. Res. 18, 1502 (2003)]. They showed that this alloy exhibits significantly improved glass-forming ability (GFA) in comparison with Mg65Cu25Y10 alloy. However, this improved GFA cannot be indicated by the supercooled liquid region ΔT and the reduced glass-transition temperature Trg. As shown in the current comment, the new parameter γ, Tx/(Tg + Tl) defined in our recent papers [Z.P. Lu and C.T. Liu, Acta Mater. 50, 3501 (2002); Z.P. Lu and C.T. Liu, Phys. Rev. Lett. 91, 115505 (2003)] can well gauge GFA for bulk metallic glasses, including the current Mg-based alloys.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 425 ◽  
Author(s):  
Edueng ◽  
Bergström ◽  
Gråsjö ◽  
Mahlin

This study shows the importance of the chosen method for assessing the glass-forming ability (GFA) and glass stability (GS) of a drug compound. Traditionally, GFA and GS are established using in situ melt-quenching in a differential scanning calorimeter. In this study, we included 26 structurally diverse glass-forming drugs (i) to compare the GFA class when the model drugs were produced by spray-drying with that when melt-quenching was used, (ii) to investigate the long-term physical stability of the resulting amorphous solids, and (iii) to investigate the relationship between physicochemical properties and the GFA of spray-dried solids and their long-term physical stability. The spray-dried solids were exposed to dry (<5% RH) and humid (75% RH) conditions for six months at 25 °C. The crystallization of the spray-dried solids under these conditions was monitored using a combination of solid-state characterization techniques including differential scanning calorimetry, Raman spectroscopy, and powder X-ray diffraction. The GFA/GS class assignment for 85% of the model compounds was method-dependent, with significant differences between spray-drying and melt-quenching methods. The long-term physical stability under dry condition of the compounds was predictable from GFA/GS classification and glass transition and crystallization temperatures. However, the stability upon storage at 75% RH could not be predicted from the same data. There was no strong correlation between the physicochemical properties explored and the GFA class or long-term physical stability. However, there was a slight tendency for compounds with a relatively larger molecular weight, higher glass transition temperature, higher crystallization temperature, higher melting point and higher reduced glass transition temperature to have better GFA and better physical stability. In contrast, a high heat of fusion and entropy of fusion seemed to have a negative impact on the GFA and physical stability of our dataset.


Sign in / Sign up

Export Citation Format

Share Document