The symmetric broadening of the water relaxation peak in polymer–water mixtures and its relationship to the hydrophilic and hydrophobic properties of polymers

2002 ◽  
Vol 116 (19) ◽  
pp. 8610 ◽  
Author(s):  
Yaroslav E. Ryabov ◽  
Yuri Feldman ◽  
Naoki Shinyashiki ◽  
Shin Yagihara
2007 ◽  
Author(s):  
Jan Dolezel ◽  
Josef Jampilek ◽  
Jiri Dohnal ◽  
Veronika Opletalova

2019 ◽  
Vol 298 ◽  
pp. 59-63 ◽  
Author(s):  
Zheng Cun Zhou ◽  
J. Du ◽  
S.Y. Gu ◽  
Y.J. Yan

The β-Ti alloys exhibit excellent shape memory effect and superelastic properties. The interstitial atoms in the alloys have important effect on their physical and mechanical properties. For the interstitial atoms, the internal friction technique can be used to detect their distributions and status in the alloys. The anelastic relaxation in β-Ti alloys is discussed in this paper. β-Ti alloys possesses bcc (body center body) structure. The oxygen (O) atoms in in the alloys is difficult to be removed. The O atoms located at the octahedral sites in the alloys will produce relaxation under cycle stress. In addition, the interaction between the interstitial atoms and substitute atoms, e.g., Nb-O,Ti-O can also produce relaxation. Therefore, the observed relaxational internal friction peak during the measuring of internal friction is widened. The widened multiple relaxation peak can be revolved into Debye,s elemental peaks in Ti-based alloys. The relaxation peak is associated with oxygen movements in lattices under the application of cycle stress and the interactions of oxygen-substitute atoms in metastable β phase (βM) phase for the water-cooled specimens and in the stable β (βS) phase for the as-sintered specimens. The damping peak height is not only associated with the interstitial oxygen, but also the stability and number of βM in the alloys.


Author(s):  
Bingfeng Shi ◽  
Jianhua Lv ◽  
Ying Liu ◽  
Yang Xiao ◽  
Changli Lü

Driven by the instability of perovskite quantum dots (PQDs), different encapsulation techniques are used to improve stability of PQDs. However, further improvements in the extreme environmental tolerance and polar solvent...


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1241
Author(s):  
Michael Ioelovich

In this study, physicochemical and chemical methods of cellulose modification were used to increase the hydrophobicity of this natural semicrystalline biopolymer. It has been shown that acid hydrolysis of the initial cellulose increases its crystallinity, which improves hydrophobicity, but only to a small extent. A more significant hydrophobization effect was observed after chemical modification by esterification, when polar hydroxyl groups of cellulose were replaced by non-polar substituents. The esterification process was accompanied by the disruption of the crystalline structure of cellulose and its transformation into the mesomorphous structure of cellulose esters. It was found that the replacement of cellulose hydroxyls with ester groups leads to a significant increase in the hydrophobicity of the resulting polymer. Moreover, the increase of the number of non-polar groups in the ester substituent contributes to rise in hydrophobicity of cellulose derivative. Depending on the type of ester group, the hydrophobicity increased in the following order: acetate < propionate < butyrate. Therefore, tributyrate cellulose (TBC) demonstrated the most hydrophobicity among all studied samples. In addition, the mixed ester, triacetobutyrate cellulose (TAB), also showed a sufficiently high hydrophobicity. The promising performance properties of hydrophobic cellulose esters, TBC and TAB, were also demonstrated.


1986 ◽  
Vol 27 (4) ◽  
pp. 520-530
Author(s):  
Jens Laurits Larsen ◽  
Peter Høgh ◽  
Kari Houind-Hougen

2021 ◽  
Vol 35 (3) ◽  
Author(s):  
Xuan Meng ◽  
Linpeng Jin ◽  
Chao Yang ◽  
Li Shi ◽  
Naiwang Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document