High-energy electrons near the dielectric-plasma boundary in a large-area surface-wave plasma excited at 915 MHz

2002 ◽  
Vol 81 (11) ◽  
pp. 1966-1968 ◽  
Author(s):  
Masaaki Nagatsu ◽  
Takahiko Niwa ◽  
Hideo Sugai
2012 ◽  
Vol 78 (4) ◽  
pp. 327-331 ◽  
Author(s):  
N. LEMOS ◽  
J. L. MARTINS ◽  
J. M. DIAS ◽  
K. A. MARSH ◽  
A. PAK ◽  
...  

AbstractIn this work we present an experimental study where energetic ions were produced in an underdense 2.5 × 1019 cm−3 plasma created by a 50 fs Ti:Sapphire laser with 5 TWs of power. The plasma comprises 95% He and 5% N2 gases. Ionization-induced trapping of nitrogen K-shell electrons in the laser-induced wakefield generates an electron beam with a mean energy of 40 MeV and ~1 nC of charge. Some of the helium ions at the wake–vacuum interface are accelerated with a measured minimum ion energy of He1+ ions of 1.2 MeV and He2+ ions of 4 MeV. The physics of the interaction is studied with 2D particle-in-cell simulations. These reveal the formation of an ion filament on the axis of the plasma due to space charge attraction of the wakefield-accelerated high-charge electron bunch. Some of these high-energy electrons escape the plasma to form a sheath at the plasma–vacuum boundary that accelerates some of the ions in the filament in the forward direction. Electrons with energy less than the sheath potential cannot escape and return to the plasma boundary in a vortex-like motion. This in turn produces a time-varying azimuthal magnetic field, which generates a longitudinal electric field at the interface that further accelerates and collimates the ions.


Author(s):  
J. A. Eades

Microdiffraction from surfaces at near grazing incidence is an important method of surface characterization. It is very much akin to RHEED (reflection high-energy electron diffraction) except that in RHEED a large area of sample (∼ 1 mm2) contributes to the diffraction. In this respect the relationship between RHEED and surface microdiffraction is analogous to that between selected-area diffraction and microdiffraction in transmission. In addition RHEED systems usually have no post-specimen lenses and therefore operate at a fixed camera length.Surface microdiffraction can contribute important information for the characterization of surfaces but there are some important factors that make it more complex than in the case of convergent-beam diffraction in transmission.At grazing incidence, even with high-energy electrons, refraction at the surface is important -whereas in transmission (at near-normal incidence) it may be neglected.


Author(s):  
C. C. Ahn ◽  
S. Karnes ◽  
M. Lvovsky ◽  
C. M. Garland ◽  
H. A. Atwater ◽  
...  

The bane of CCD imaging systems for transmission electron microscopy at intermediate and high voltages has been their relatively poor modulation transfer function (MTF), or line pair resolution. The problem originates primarily with the phosphor screen. On the one hand, screens should be thick so that as many incident electrons as possible are converted to photons, yielding a high detective quantum efficiency(DQE). The MTF diminishes as a function of scintillator thickness however, and to some extent as a function of fluorescence within the scintillator substrates. Fan has noted that the use of a thin layer of phosphor beneath a self supporting 2μ, thick Al substrate might provide the most appropriate compromise for high DQE and MTF in transmission electron microcscopes which operate at higher voltages. Monte Carlo simulations of high energy electron trajectories reveal that only little beam broadening occurs within this thickness of Al film. Consequently, the MTF is limited predominantly by broadening within the thin phosphor underlayer. There are difficulties however, in the practical implementation of this design, associated mostly with the mechanical stability of the Al support film.


2020 ◽  
Vol 639 ◽  
pp. A80
Author(s):  
Xiao-Na Sun ◽  
Rui-Zhi Yang ◽  
Yun-Feng Liang ◽  
Fang-Kun Peng ◽  
Hai-Ming Zhang ◽  
...  

We report the detection of high-energy γ-ray signal towards the young star-forming region, W40. Using 10-yr Pass 8 data from the Fermi Large Area Telescope (Fermi-LAT), we extracted an extended γ-ray excess region with a significance of ~18σ. The radiation has a spectrum with a photon index of 2.49 ± 0.01. The spatial correlation with the ionized gas content favors the hadronic origin of the γ-ray emission. The total cosmic-ray (CR) proton energy in the γ-ray production region is estimated to be the order of 1047 erg. However, this could be a small fraction of the total energy released in cosmic rays (CRs) by local accelerators, presumably by massive stars, over the lifetime of the system. If so, W40, together with earlier detections of γ-rays from Cygnus cocoon, Westerlund 1, Westerlund 2, NGC 3603, and 30 Dor C, supports the hypothesis that young star clusters are effective CR factories. The unique aspect of this result is that the γ-ray emission is detected, for the first time, from a stellar cluster itself, rather than from the surrounding “cocoons”.


2019 ◽  
Vol 209 ◽  
pp. 01007
Author(s):  
Francesco Nozzoli

Precision measurements by AMS of the fluxes of cosmic ray positrons, electrons, antiprotons, protons as well as their rations reveal several unexpected and intriguing features. The presented measurements extend the energy range of the previous observations with much increased precision. The new results show that the behavior of positron flux at around 300 GeV is consistent with a new source that produce equal amount of high energy electrons and positrons. In addition, in the absolute rigidity range 60–500 GV, the antiproton, proton, and positron fluxes are found to have nearly identical rigidity dependence and the electron flux exhibits different rigidity dependence.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 133
Author(s):  
Ji-Hee Lee ◽  
Geonhwa Jee ◽  
Young-Sil Kwak ◽  
Heejin Hwang ◽  
Annika Seppälä ◽  
...  

Energetic particle precipitation (EPP) is known to be an important source of chemical changes in the polar middle atmosphere in winter. Recent modeling studies further suggest that chemical changes induced by EPP can also cause dynamic changes in the middle atmosphere. In this study, we investigated the atmospheric responses to the precipitation of medium-to-high energy electrons (MEEs) over the period 2005–2013 using the Specific Dynamics Whole Atmosphere Community Climate Model (SD-WACCM). Our results show that the MEE precipitation significantly increases the amounts of NOx and HOx, resulting in mesospheric and stratospheric ozone losses by up to 60% and 25% respectively during polar winter. The MEE-induced ozone loss generally increases the temperature in the lower mesosphere but decreases the temperature in the upper mesosphere with large year-to-year variability, not only by radiative effects but also by adiabatic effects. The adiabatic effects by meridional circulation changes may be dominant for the mesospheric temperature changes. In particular, the meridional circulation changes occasionally act in opposite ways to vary the temperature in terms of height variations, especially at around the solar minimum period with low geomagnetic activity, which cancels out the temperature changes to make the average small in the polar mesosphere for the 9-year period.


1990 ◽  
Vol 43 (5) ◽  
pp. 583
Author(s):  
GL Price

Recent developments in the growth of semiconductor thin films are reviewed. The emphasis is on growth by molecular beam epitaxy (MBE). Results obtained by reflection high energy electron diffraction (RHEED) are employed to describe the different kinds of growth processes and the types of materials which can be constructed. MBE is routinely capable of heterostructure growth to atomic precision with a wide range of materials including III-V, IV, II-VI semiconductors, metals, ceramics such as high Tc materials and organics. As the growth proceeds in ultra high vacuum, MBE can take advantage of surface science techniques such as Auger, RHEED and SIMS. RHEED is the essential in-situ probe since the final crystal quality is strongly dependent on the surface reconstruction during growth. RHEED can also be used to calibrate the growth rate, monitor growth kinetics, and distinguish between various growth modes. A major new area is lattice mismatched growth where attempts are being made to construct heterostructures between materials of different lattice constants such as GaAs on Si. Also described are the new techniques of migration enhanced epitaxy and tilted superlattice growth. Finally some comments are given On the means of preparing large area, thin samples for analysis by other techniques from MBE grown films using capping, etching and liftoff.


1979 ◽  
Vol 26 (6) ◽  
pp. 5101-5106 ◽  
Author(s):  
M. J. Treadaway ◽  
C. E. Mallon ◽  
T. M. Flanagan ◽  
R. Denson ◽  
E. P. Wenaas

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1111
Author(s):  
Natalia Miler ◽  
Iwona Jedrzejczyk ◽  
Seweryn Jakubowski ◽  
Janusz Winiecki

Classical mutation breeding using physical factors is a common breeding method for ornamental crops. The aim of our study was to examine the utility of ovaries excised from irradiated inflorescences of Chrysanthemum × morifolium (Ramat.) as explants for breeding purposes. We studied the in vitro regeneration capacity of the ovaries of two chrysanthemum cultivars: ‘Profesor Jerzy’ and ‘Karolina’ preceded by irradiation with high-energy photons (total dose 5, 10 and 15 Gy) and high-energy electrons (total dose 10 Gy). Growth and inflorescence parameters of greenhouse acclimatized regenerants were recorded, and ploidy level was estimated with flow cytometry. The strong impact of genotype on regeneration efficiency was recorded—cultivar ‘Karolina’ produced only 7 viable shoots, while ‘Profesor Jerzy’ produced totally 428 shoots. With an increase of irradiation dose, the regeneration decreased, the least responsive were explants irradiated with 15 Gy high-energy photons and 10 Gy high-energy electrons. Regenerants of ‘Profesor Jerzy’ obtained from these explants possessed shorter stem and flowered later. The highest number of stable, color and shape inflorescence variations were obtained from explants treated with 10 Gy high-energy photons. Variations of inflorescences were predominantly changes of shape—from full to semi-full. New color phenotypes were dark yellow, light yellow and pinkish, among them only the dark yellow phenotype remained stable during second year cultivation. None of the regenerants were haploid. The application of ovaries irradiated within the whole inflorescence of chrysanthemum can be successfully applied in the breeding programs, provided the mother cultivar regenerate in vitro efficiently.


Sign in / Sign up

Export Citation Format

Share Document