Impact of virtual substrate growth on high performance strained Si/SiGe double quantum well metal-oxide-semiconductor field-effect transistors

2003 ◽  
Vol 94 (10) ◽  
pp. 6855-6863 ◽  
Author(s):  
S. H. Olsen ◽  
A. G. O’Neill ◽  
S. Chattopadhyay ◽  
K. S. K. Kwa ◽  
L. S. Driscoll ◽  
...  
MRS Bulletin ◽  
1996 ◽  
Vol 21 (4) ◽  
pp. 38-44 ◽  
Author(s):  
F.K. LeGoues

Recently much interest has been devoted to Si-based heteroepitaxy, and in particular, to the SiGe/Si system. This is mostly for economical reasons: Si-based technology is much more advanced, is widely available, and is cheaper than GaAs-based technology. SiGe opens the door to the exciting (and lucrative) area of Si-based high-performance devices, although optical applications are still limited to GaAs-based technology. Strained SiGe layers form the base of heterojunction bipolar transistors (HBTs), which are currently used in commercial high-speed analogue applications. They promise to be low-cost compared to their GaAs counterparts and give comparable performance in the 2-20-GHz regime. More recently we have started to investigate the use of relaxed SiGe layers, which opens the door to a wider range of application and to the use of SiGe in complementary metal oxide semiconductor (CMOS) devices, which comprise strained Si and SiGe layers. Some recent successes include record-breaking low-temperature electron mobility in modulation-doped layers where the mobility was found to be up to 50 times better than standard Si-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Even more recently, SiGe-basedp-type MOSFETS were built with oscillation frequency of up to 50 GHz, which is a new record, in anyp-type material for the same design rule.


2014 ◽  
Vol 104 (13) ◽  
pp. 131605 ◽  
Author(s):  
Thenappan Chidambaram ◽  
Dmitry Veksler ◽  
Shailesh Madisetti ◽  
Andrew Greene ◽  
Michael Yakimov ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 223 ◽  
Author(s):  
Yannan Zhang ◽  
Ke Han ◽  
and Jiawei Li

Ultra-low power and high-performance logical devices have been the driving force for the continued scaling of complementary metal oxide semiconductor field effect transistors which greatly enable electronic devices such as smart phones to be energy-efficient and portable. In the pursuit of smaller and faster devices, researchers and scientists have worked out a number of ways to further lower the leaking current of MOSFETs (Metal oxide semiconductor field effect transistor). Nanowire structure is now regarded as a promising candidate of future generation of logical devices due to its ultra-low off-state leaking current compares to FinFET. However, the potential of nanowire in terms of off-state current has not been fully discovered. In this article, a novel Core–Insulator Gate-All-Around (CIGAA) nanowire has been proposed, investigated, and simulated comprehensively and systematically based on 3D numerical simulation. Comparisons are carried out between GAA and CIGAA. The new CIGAA structure exhibits low off-state current compares to that of GAA, making it a suitable candidate of future low-power and energy-efficient devices.


2001 ◽  
Vol 79 (25) ◽  
pp. 4246-4248 ◽  
Author(s):  
C. W. Leitz ◽  
M. T. Currie ◽  
M. L. Lee ◽  
Z.-Y. Cheng ◽  
D. A. Antoniadis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document