EVIDENCE FOR SPACE CHARGE LIMITED IONIC TRANSPORT AT THE SILVER CHLORIDE‐AQUEOUS SOLUTION INTERFACE

1969 ◽  
Vol 14 (3) ◽  
pp. 104-106 ◽  
Author(s):  
H. A. Hoyen ◽  
J. A. Strozier ◽  
Che‐Yu Li
2021 ◽  
Vol 9 ◽  
Author(s):  
M.A. Kononov ◽  
V.I. Pustovoy ◽  
V.V. Svetikov ◽  
B.A. Usievich

The results of a study of the dynamics of the excitation angle of a surface electromagnetic wave (SEW) at the interface between a silver/NaCl aqueous solution of concentrations 10−3, 10−4, 10−6 and 10−10 M are presented. It is shown that the rate of change in the excitation angle of SEW is proportional to the concentration of the solution up to a dilution of 10−10 M. The observed effect is explained by the formation of silver chloride on the surface of the silver film as a result of the interaction of solution ions with nanoscale clusters of the silver film. The proposed technique for measuring the dynamics of the excitation angle of SEW can be used for a comparative analysis of the concentrations of highly dilute solutions, as well as for studying the formation and dynamics of transition layers and physicochemical processes in the near-surface regions.


2003 ◽  
Vol 68 (8) ◽  
pp. 1407-1419 ◽  
Author(s):  
Claudio Fontanesi ◽  
Roberto Andreoli ◽  
Luca Benedetti ◽  
Roberto Giovanardi ◽  
Paolo Ferrarini

The kinetics of the liquid-like → solid-like 2D phase transition of adenine adsorbed at the Hg/aqueous solution interface is studied. Attention is focused on the effect of temperature on the rate of phase change; an increase in temperature is found to cause a decrease of transition rate.


1966 ◽  
Vol 2 (7) ◽  
pp. 282
Author(s):  
A.M. Phahle ◽  
K.C. Kao ◽  
J.H. Calderwood

1995 ◽  
Vol 377 ◽  
Author(s):  
G. J. Adriaenssens ◽  
B. Yan ◽  
A. Eliat

ABSTRACTA full and detailed transient space-charge-limited current (T-SCLC) study of a-Si:H p-i-n diodes has been carried out in the time range from 108s to 10s. In the short-time regime, general features of T-SCLC such as the current cusp and the carrier extraction period were observed, and related transport parameters were deduced. Electron emission from deep states was studied by measuring the current transients well beyond the extraction time. The emission time is thermally activated at temperatures higher than 250K and levels off at lower temperatures. The high temperature behaviour places the upper edge of the deep states at 0.42–0.52eV below the conduction band edge, and the attempt-to-escape frequency in the range of 1011-1013Hz. An observed shift of emission time with light intensity is attributed to defect relaxation.


Sign in / Sign up

Export Citation Format

Share Document