Comment on the Interpretation of Hyperconjugation and Spin Delocalization in Organic Radicals

1967 ◽  
Vol 47 (8) ◽  
pp. 3098-3100 ◽  
Author(s):  
J. P. Colpa ◽  
E. de Boer ◽  
D. Lazdins ◽  
M. Karplus
2020 ◽  
Author(s):  
Martin Sebastian Zöllner ◽  
Rukan Nasri ◽  
Haitao Zhang ◽  
Carmen Herrmann

Spin polarization in the electron transmission of radicals is important for understanding single-molecule conductance experiments focusing on shot noise, Kondo properties or magnetoresistance. We study how stable radical substituents can affect such spin polarization when attached to oligo(p- phenyleneethynylene) (OPE) backbones. We find that it is not straightforward to translate the spin density on a stable radical substituent into spin-dependent transmission for the para-connected wires under study here, owing to increased steric interactions compared with meta-connected wires, and a resulting twisting of the radical substituent and OPE π systems. The most promising example is a t-butyl nitroxide substituent, which, despite little pronounced spin delocalization onto the backbone, yields a spin-dependent transmission feature which one might be able to shift towards the Fermi energy by additional substituents. We also find that for bulkier substituents, dispersion interactions with the substituent can lead to twisting of one of the outer OPE rings, reducing the overall conductance. As a further potential design consideration, attaching radicals via linkers might increase the possibilities for spin-dependent intermolecular and molecule-electrode interactions.


2020 ◽  
Author(s):  
Martin Sebastian Zöllner ◽  
Rukan Nasri ◽  
Haitao Zhang ◽  
Carmen Herrmann

Spin polarization in the electron transmission of radicals is important for understanding single-molecule conductance experiments focusing on shot noise, Kondo properties or magnetoresistance. We study how stable radical substituents can affect such spin polarization when attached to oligo(p- phenyleneethynylene) (OPE) backbones. We find that it is not straightforward to translate the spin density on a stable radical substituent into spin-dependent transmission for the para-connected wires under study here, owing to increased steric interactions compared with meta-connected wires, and a resulting twisting of the radical substituent and OPE π systems. The most promising example is a t-butyl nitroxide substituent, which, despite little pronounced spin delocalization onto the backbone, yields a spin-dependent transmission feature which one might be able to shift towards the Fermi energy by additional substituents. We also find that for bulkier substituents, dispersion interactions with the substituent can lead to twisting of one of the outer OPE rings, reducing the overall conductance. As a further potential design consideration, attaching radicals via linkers might increase the possibilities for spin-dependent intermolecular and molecule-electrode interactions.


2020 ◽  
Author(s):  
Martin Sebastian Zöllner ◽  
Rukan Nasri ◽  
Haitao Zhang ◽  
Carmen Herrmann

Spin polarization in the electron transmission of radicals is important for understanding single-molecule conductance experiments focusing on shot noise, Kondo properties or magnetoresistance. We study how stable radical substituents can affect such spin polarization when attached to oligo(p- phenyleneethynylene) (OPE) backbones. We find that it is not straightforward to translate the spin density on a stable radical substituent into spin-dependent transmission for the para-connected wires under study here, owing to increased steric interactions compared with meta-connected wires, and a resulting twisting of the radical substituent and OPE π systems. The most promising example is a t-butyl nitroxide substituent, which, despite little pronounced spin delocalization onto the backbone, yields a spin-dependent transmission feature which one might be able to shift towards the Fermi energy by additional substituents. We also find that for bulkier substituents, dispersion interactions with the substituent can lead to twisting of one of the outer OPE rings, reducing the overall conductance. As a further potential design consideration, attaching radicals via linkers might increase the possibilities for spin-dependent intermolecular and molecule-electrode interactions.


2019 ◽  
Author(s):  
Ke-Yin Ye ◽  
Terry McCallum ◽  
Song Lin

Organic radicals are generally short-lived intermediates with exceptionally high reactivity. Strategically, achieving synthetically useful transformations mediated by organic radicals requires both efficient initiation and selective termination events. Here, we report a new catalytic strategy, namely bimetallic radical redox-relay, in the regio- and stereoselective rearrangement of epoxides to allylic alcohols. This approach exploits the rich redox chemistry of Ti and Co complexes and merges reductive epoxide ring opening (initiation) with hydrogen atom transfer (termination). Critically, upon effecting key bond-forming and -breaking events, Ti and Co catalysts undergo proton-transfer/electron-transfer with one another to achieve turnover, thus constituting a truly synergistic dual catalytic system.<br>


2020 ◽  
Vol 19 (11) ◽  
pp. 1224-1229 ◽  
Author(s):  
Alim Abdurahman ◽  
Timothy J. H. Hele ◽  
Qinying Gu ◽  
Jiangbin Zhang ◽  
Qiming Peng ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 135
Author(s):  
Zhibin Wen ◽  
Qianqian Zhu ◽  
Jiali Zhou ◽  
Shudi Zhao ◽  
Jinnan Wang ◽  
...  

Novel flower-shaped C-dots/Co3O4{111} with dual-reaction centers were constructed to improve the Fenton-like reaction activity and peroxymonosulfate (PMS) conversion to sulfate radicals. Due to the exposure of a high surface area and Co3O4{111} facets, flower-shaped C-dots/Co3O4{111} could provide more Co(II) for PMS activation than traditional spherical Co3O4{110}. Meanwhile, PMS was preferred for adsorption on Co3O4{111} facets because of a high adsorption energy and thereby facilitated the electron transfer from Co(II) to PMS. More importantly, the Co–O–C linkage between C-dots and Co3O4{111} induced the formation of the dual-reaction center, which promoted the production of reactive organic radicals (R•). PMS could be directly reduced to SO4−• by R• over C-dots. On the other hand, electron transferred from R• to Co via Co–O–C linkage could accelerate the redox of Co(II)/(III), avoiding the invalid decomposition of PMS. Thus, C-dots doped on Co3O4{111} improved the PMS conversion rate to SO4−• over the single active site, resulting in high turnover numbers (TONs). In addition, TPR analysis indicated that the optimal content of C-dots doped on Co3O4{111} is 2.5%. More than 99% of antibiotics and dyes were degraded over C-dots/Co3O4{111} within 10 min. Even after six cycles, C-dots/Co3O4{111} still remained a high catalytic activity.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1230
Author(s):  
Vega Lloveras ◽  
José Vidal-Gancedo

The search for new biomedical applications of dendrimers has promoted the synthesis of new radical-based molecules. Specifically, obtaining radical dendrimers has opened the door to their use in various fields such as magnetic resonance imaging, as anti-tumor or antioxidant agents, or the possibility of developing new types of devices based on the paramagnetic properties of organic radicals. Herein, we present a mini review of radical dendrimers based on polyphosphorhydrazone, a new type of macromolecule with which, thanks to their versatility, new metal-free contrast agents are being obtained, among other possible applications.


2010 ◽  
Vol 132 (11) ◽  
pp. 3682-3684 ◽  
Author(s):  
Carmen Herrmann ◽  
Gemma C. Solomon ◽  
Mark A. Ratner

2021 ◽  
Vol 129 (18) ◽  
pp. 180901
Author(s):  
John M. Hudson ◽  
Timothy J. H. Hele ◽  
Emrys W. Evans

2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Yury I. Lyakhovetsky ◽  
Elena A. Shilova ◽  
Alexandra P. Pleshkova ◽  
Alexander I. Belokon ◽  
Sergey O. Yakushin ◽  
...  

C60was shown to react with organosilanes Me4Si, Ph2SiH2, Ph2MeSiH, Ph4Si, andα-naphthylphenylmethylsilane in the electron ionization ion source of a mass spectrometer with the transfer of the corresponding organic radicals (Me, Ph, andα-naphthyl) from the silanes to the fullerene. The reactions were accompanied by hydrogen addition to some products and hydrogen loss from them. C70reacted with Me4Si analogously. A reaction mechanism involving homolytic dissociation of the silanes under electron impact to the corresponding organic radicals, which react further with C60at the surface of the ionization chamber of the mass spectrometer to give the respective adducts, was offered. A mechanistic study of the reaction of C60with Me4Si supported it. No silicon containing derivatives of the fullerenes were found. C60reacted with Ph4Si in solution under UV irradiation in a similar fashion furnishing phenyl derivatives of the fullerene. These results provide an additional support to the hypothesis formulated earlier thatthe homolytic reactive mass spectrometry of fullerenes (the reactions of fullerenes with other species in the ionization chambers of mass spectrometers and their mass spectral monitoring)can predict the reactivity of them toward the same reagents in solution to a significant extent.


Sign in / Sign up

Export Citation Format

Share Document