Near-infrared femtosecond laser-induced crystallization of amorphous silicon

2004 ◽  
Vol 85 (7) ◽  
pp. 1232-1234 ◽  
Author(s):  
Jia-Min Shieh ◽  
Zun-Hao Chen ◽  
Bau-Tong Dai ◽  
Yi-Chao Wang ◽  
Alexei Zaitsev ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5296
Author(s):  
Kirill Bronnikov ◽  
Alexander Dostovalov ◽  
Artem Cherepakhin ◽  
Eugeny Mitsai ◽  
Alexander Nepomniaschiy ◽  
...  

Amorphous silicon (α-Si) film present an inexpensive and promising material for optoelectronic and nanophotonic applications. Its basic optical and optoelectronic properties are known to be improved via phase transition from amorphous to polycrystalline phase. Infrared femtosecond laser radiation can be considered to be a promising nondestructive and facile way to drive uniform in-depth and lateral crystallization of α-Si films that are typically opaque in UV-visible spectral range. However, so far only a few studies reported on use of near-IR radiation for laser-induced crystallization of α-Si providing less information regarding optical properties of the resultant polycrystalline Si films demonstrating rather high surface roughness. The present work demonstrates efficient and gentle single-pass crystallization of α-Si films induced by their direct irradiation with near-IR femtosecond laser pulses coming at sub-MHz repetition rate. Comprehensive analysis of morphology and composition of laser-annealed films by atomic-force microscopy, optical, micro-Raman and energy-dispersive X-ray spectroscopy, as well as numerical modeling of optical spectra, confirmed efficient crystallization of α-Si and high-quality of the obtained films. Moreover, we highlight localized laser-induced crystallization of α-Si as a promising way for optical information encryption, anti-counterfeiting and fabrication of micro-optical elements.


2014 ◽  
Vol 556 ◽  
pp. 410-413 ◽  
Author(s):  
Andrey V. Emelyanov ◽  
Mark V. Khenkin ◽  
Andrey G. Kazanskii ◽  
Pavel A. Forsh ◽  
Pavel K. Kashkarov ◽  
...  

2006 ◽  
Vol 89 (15) ◽  
pp. 151907 ◽  
Author(s):  
Geon Joon Lee ◽  
Seok Ho Song ◽  
YoungPak Lee ◽  
Hyeonsik Cheong ◽  
Chong Seung Yoon ◽  
...  

Author(s):  
Kuan-Wen Chen ◽  
Yi-Chao Wang ◽  
Shih-Hsuan Kao ◽  
Po-Hsun Wu ◽  
Ci-Ling Pan

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 236
Author(s):  
Rui Lou ◽  
Guangying Li ◽  
Xu Wang ◽  
Wenfu Zhang ◽  
Yishan Wang ◽  
...  

Antireflection and superhydrophilicity performance are desirable for improving the properties of electronic devices. Here, we experimentally provide a strategy of femtosecond laser preparation to create micro-nanostructures on the graphite surface in an air environment. The modified graphite surface is covered with abundant micro-nano structures, and its average reflectance is measured to be 2.7% in the ultraviolet, visible and near-infrared regions (250 to 2250 nm). The wettability transformation of the surface from hydrophilicity to superhydrophilicity is realized. Besides, graphene oxide (GO) and graphene are proved to be formed on the sample surface. This micro-nanostructuring method, which demonstrates features of high efficiency, high controllability, and hazardous substances zero discharge, exhibits the application for functional surface.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shulei Li ◽  
Mingcheng Panmai ◽  
Shaolong Tie ◽  
Yi Xu ◽  
Jin Xiang ◽  
...  

Abstract Metasurfaces composed of regularly arranged and deliberately oriented metallic nanoparticles can be employed to manipulate the amplitude, phase and polarization of an incident electromagnetic wave. The metasurfaces operating in the visible to near infrared spectral range rely on the modern fabrication technologies which offer a spatial resolution beyond the optical diffraction limit. Although direct laser writing is an alternative to the fabrication of nanostructures, the achievement of regular nanostructures with deep-subwavelength periods by using this method remains a big challenge. Here, we proposed and demonstrated a novel strategy for regulating disordered plasmonic nanoparticles into nanogratings with deep-subwavelength periods and reshaped nanoparticles by using femtosecond laser pulses. The orientations of the nanogratings depend strongly on the polarization of the femtosecond laser light. Such nanogratings exhibit reflection and polarization control over the reflected light, enabling the realization of polarization sensitive optical memory and color display with high spatial resolution and good chromacity.


Sign in / Sign up

Export Citation Format

Share Document