Ge–Si separate absorption and multiplication avalanche photodiode for Geiger mode single photon detection

2008 ◽  
Vol 93 (18) ◽  
pp. 183511 ◽  
Author(s):  
M. S. Carroll ◽  
K. Childs ◽  
R. Jarecki ◽  
T. Bauer ◽  
K. Saiz
2012 ◽  
Vol 246-247 ◽  
pp. 273-278 ◽  
Author(s):  
Hua Lü

In this paper, we experimentally characterize the Inga As/Imp avalanche photodiode (APD), which is working in Geiger mode, so as to choose the single photon detector for quantum communication. Due to the fact that bias of APD tends to be flat after avalanche, we first adopt the methodology of passive quenching to determine dark breakdown voltage. Experiment results indicate that temperature reduction will widen the optimal operating region and increase the optimal multiplication; therefore APD will be more sensitive. Epitaxial APD is the best choice for single-photon detection among the APDs we have tested for its low noise level and high signal-to-noise ratio (SNR). Finally, we design a mixed passive-active quenching integrated circuit with gate control, which is quick with the quenching time of about 25ns and has controllable dead time with minimum of about 60ns.


2016 ◽  
Vol 14 (3) ◽  
pp. 030401-30404 ◽  
Author(s):  
Yafan Shi Yafan Shi ◽  
Zhaohui Li Zhaohui Li ◽  
Baicheng Feng Baicheng Feng ◽  
Peiqin Yan Peiqin Yan ◽  
Bingcheng Du Bingcheng Du ◽  
...  

2014 ◽  
Vol 21 (4) ◽  
pp. 708-715 ◽  
Author(s):  
Tobias Reusch ◽  
Markus Osterhoff ◽  
Johannes Agricola ◽  
Tim Salditt

The technical realisation and the commissioning experiments of a high-speed X-ray detector based on a quadrant avalanche silicon photodiode and high-speed digitizers are described. The development is driven by the need for X-ray detectors dedicated to time-resolved diffraction and imaging experiments, ideally requiring pulse-resolved data processing at the synchrotron bunch repetition rate. By a novel multi-photon detection scheme, the exact number of X-ray photons within each X-ray pulse can be recorded. Commissioning experiments at beamlines P08 and P10 of the storage ring PETRA III, at DESY, Hamburg, Germany, have been used to validate the pulse-wise multi-photon counting scheme at bunch frequencies ≥31 MHz, enabling pulse-by-pulse readout during the PETRA III 240-bunch mode with single-photon detection capability. An X-ray flux of ≥3.7 × 109 photons s−1can be detected while still resolving individual photons at low count rates.


Sign in / Sign up

Export Citation Format

Share Document