Ru/FeCoB double layered film with high in-plane magnetic anisotropy field of 500 Oe

2009 ◽  
Vol 105 (7) ◽  
pp. 07A316 ◽  
Author(s):  
Ken-ichiro Hirata ◽  
Atsuto Hashimoto ◽  
Toshimitsu Matsuu ◽  
Shigeki Nakagawa
2015 ◽  
Vol 815 ◽  
pp. 227-232 ◽  
Author(s):  
Ying Yu ◽  
Shu Hong Xie ◽  
Qing Feng Zhan

A practical way to manipulate the magnetic anisotropy of magnetostrictive FeGa thin films grown on flexible polyethylene terephthalate (PET) substrates is introduced in this study. The effect of film thickness on magnetic properties and magnetostriction constant of polycrystalline FeGa thin films was investigated. The anisotropy field Hk of flexible FeGa films, i.e., the saturation field determined by fitting the hysteresis curves measured along the hard axis, was enhanced with increasing the tensile strain applied along the easy axis of the thin films, but this enhancement via strain became unconspicuous with increasing the thickness of FeGa films. In order to study the magnetic sensitivity of thin films responding to the external stress, we applied different strains on these films and measure the corresponding anisotropy field. Moreover, the effective magnetostriction constant of FeGa films was calculated from the changes of both anisotropy field and external strain based on the Villari effect. A Neel’s phenomenological model was developed to illustrate that the effective anisotropy field of FeGa thin films was contributed from both the constant volume term and the inverse thickness dependent surface term. Therefore, the magnetic properties for the volume and surface of FeGa thin films were different, which has been verified in this work by using vibrating sample magnetometer (VSM) and magneto-optic Kerr effect (MOKE) system. The anisotropy field contributed by the surface of FeGa film and obtained by MOKE is smaller than that contributed by the film volume and measured by VSM. We ascribed the difference in Hk to the relaxation of the effective strain applied on the films with increasing the thickness of films.


2019 ◽  
Vol 5 (1) ◽  
pp. 33-39
Author(s):  
Alexey S. Semenov ◽  
Aleksey G. Nalogin ◽  
Sergey V. Shcherbakov ◽  
Alexander V. Myasnikov ◽  
Igor M. Isaev ◽  
...  

In this work we have considered metrological problems and measurement of magnetic parameters and presented methods of measuring effective magnetic anisotropy field HAeff and ferromagnetic resonance bandwidth ∆H in magnetically uniaxial hexagonal ferrites in the electromagnetic microwave working frequency range. The methods allow measuring HAeff in the 10–23 and 28–40 kE ranges and ∆H in the 0.5–5.0 range. One method (suitable for wavelength measurements in free space in the 3-mm wavelength range) has been implemented for the 78.33–118.1 GHz range. The other method (based on the use of microstrip transmission lines) has been implemented for the 25–67 GHz range. The methods have been tested for polycrystalline specimens of hexagonal barium and strontium ferrites with nominal composition or complex substituted and having high magnetic texture. The measurement results have been compared with those obtained using conventional measurement methods and spherical specimens. Our methods prove to be highly accurate and reliable.


2011 ◽  
Vol 47 (10) ◽  
pp. 2422-2424 ◽  
Author(s):  
Lei Shen ◽  
Zhi-Min Yuan ◽  
Jing Qiang Goh ◽  
Tiejun Zhou ◽  
Bo Liu ◽  
...  

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1663-1669 ◽  
Author(s):  
H. W. Chang ◽  
S. T. Huang ◽  
I. W. Chen ◽  
C. W. Chang ◽  
W. C. Chang

The effects of Hf substitution and C content on the magnetic properties, phase evolution, and microstructure of melt spun ( Sm , Pr ) Co 7- x Hf x C y ( x = 0-0.5; y = 0-0.14) ribbons have been studied. A proper Hf substitution is helpful not only in stabilizing 1:7 phase but also in enhancing its magnetic anisotropy field. As a result, magnetic properties of B r = 6.4 kG , i H c = 7.3 kOe and ( BH ) max = 8.7 MGOe for SmCo 6.9 Hf 0.1 ribbons are obtained. Besides, a small amount of C addition in the ribbons could slightly modify phase constitution and effectively refine their microstructure to strengthen the exchange coupling effect between magnetic grains. Furthermore, a slight Pr substitution for Sm may further increase the magnetization and the magnetic properties of the ribbons. The optimal magnetic properties of B r = 7.1 kG , i H c = 8.5 kOe and ( BH ) max = 11.2 MGOe could be achieved for the directly quenched Sm 0.8 Pr 0.2 Co 6.9 Hf 0.1 C 0.12 ribbons.


2020 ◽  
Vol 90 (5) ◽  
pp. 782
Author(s):  
С.В. Щербаков ◽  
А.Г. Налогин ◽  
В.Г. Костишин ◽  
А.С. Семенов ◽  
Н.Е. Адиатулина ◽  
...  

In the work in the frequency range 25 – 67 GHz the temperature changes of the effective magnetic anisotropy field and ferromagnetic resonance linewidth of the samples isotropic and anisotropic hexaferrite SrFe11.2Al0.1Si0.15Ca0.15O19 and anisotropic hexaferrite BaFe10.4Al1.4Si0.15Mn0.1O19 were studied. The samples obtained by ceramic technology with the pressing of the raw blanks in a magnetic field of 10 kOe. The studies were carried out in the temperature range+25 – +85 ºC. It was found that in the specified temperature range, the change in magnetic anisotropy is 9.8 Oe/ºC for barium hexaferrite and 4.2 Oe/ºC for strontium hexaferrite, and the change in ferromagnetic resonance linewidth is 12.2 Oe/ºC for barium hexaferrite and 10 – 12.3 Oe/ºC for strontium hexaferrite.


2015 ◽  
Vol 20 (1) ◽  
pp. 8-10 ◽  
Author(s):  
Hyun-Seok Whang ◽  
Sang-Jun Yun ◽  
Joon Moon ◽  
Sug-Bong Choe

2013 ◽  
Vol 668 ◽  
pp. 733-736
Author(s):  
Yong Jiang Di ◽  
Peng Jun Cao ◽  
Bi Jia ◽  
Jian Jun Jiang

The magnetic structure of the glass-coated magnetic alloy microwires were modeled based on the main magnetic domain structure and meshed by finite element method. The magnetic spectrum of the magnetic alloy microwires was calculated based on the micromagnetic theory. The simulation results of the magnetic spectrum of glass-coated magnetic alloy microwires showed that the magnetic anisotropy field increase as the magneto-crystalline anisotropy constants increase. The microwave resonance frequency increased accompanied by the reduction of the permeability and the increase of the magnetic anisotropy field of the glass-coated magnetic alloy microwires.


Sign in / Sign up

Export Citation Format

Share Document