The Effect of Deposition Temperature on the Growth of ZnO Nanorods on Porous Silicon using Sol-gel Immersion Method

2009 ◽  
Author(s):  
S. Amizam ◽  
M. H. Mamat ◽  
Z. Khusaimi ◽  
H. A. Rafaie ◽  
M. Z. Sahdan ◽  
...  
2013 ◽  
Vol 667 ◽  
pp. 359-362 ◽  
Author(s):  
S. Azizdzul ◽  
S. Amizam ◽  
Saifollah Abdullah ◽  
Mohamad Rusop

The optical and structural properties of Zinc Oxide (ZnO) nanostructures is prepared by sol-gel immersion method at different temperature on Porous Silicon (PSi) Substrates. PSi is produced from the Si by using electrochemical etching process. The ZnO solution is prepared by using the sol-gel immersion method. Parameters such as different deposition time were studied. The optical properties of ZnO Nanostructures will be characterized by using PL and SEM. The structural properties of ZnO Nanostructures will be characterized by using XRD. The result of investigation show that the growth of ZnO nanostructures improving as the deposition temperature increase.


2013 ◽  
Vol 667 ◽  
pp. 375-379 ◽  
Author(s):  
M. Awalludin ◽  
Mohamad Hafiz Mamat ◽  
Mohd Zainizan Sahdan ◽  
Z. Mohamad ◽  
Mohamad Rusop

This paper focus on zinc oxide (ZnO) nanorods prepared using sol-gel immersion method immersed at different time. Immersion times have been varied 1~24 hr and the characteristics of each sample have been observed. The effects of immersion time on ZnO nanorods thin films have been studied in surface morphology and structural properties using Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD), respectively.


2015 ◽  
Vol 1109 ◽  
pp. 476-480
Author(s):  
Ahmad Syakirin Ismail ◽  
Mohd Firdaus Malek ◽  
Muhammad Amir Ridhwan Abdullah ◽  
Mohamad Hafiz Mamat ◽  
M. Rusop

Aluminium (Al) - doped zinc oxide (ZnO) nanorods was deposited using sol-gel immersion method. To study the effect of stannic oxide coating (SnO2) on the structural properties of the ZnO nanorods, SnO2with different layers were deposited on the top of ZnO nanorods, from 1 to 5 layers. The structural properties of the samples have been characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy and x-ray diffraction (XRD). The analyses showed that by increasing the deposited layer, the surface roughness of the samples reduced and also reduced the porosity of the surface.


2019 ◽  
Vol 5 (2) ◽  
pp. 122
Author(s):  
Nur Jannah Idris

 In this work, a nanocomposite photocatalyst was fabricated by growing zinc oxide (ZnO) and titanium dioxide (TiO2) on the sand as a substrate. The initial sand/ZnO was fabricated via sol-gel immersion method for 4 h at 95℃. Furthermore, the sand/ZnO/TiO2 was fabricatedusing hydrothermal method for 5 h at 150℃. Based on field emission scanning electron microscopy (FESEM) analysis, the fabricated sand/ZnO/TiO2 consists of random formation of hexagonal ZnO nanorods and two pyramidal spindle ends of TiO2 nanorods. The addition of TiO2 on top of ZnO nanorods increased the number of active sites which enables more contaminants to be absorbed thus enhanced the photocatalysis process. Moreover, based on the micro-Raman spectra, the synthesized TiO2 was in rutile phase and the ZnO peak was unobservable due to the overlapping with TiO2 peak. Based on its morphological and structural properties, the fabricated sand/ZnO/TiO2 nanocomposite was potential to be applied as photocatalyst.


2009 ◽  
Vol 13 (3) ◽  
pp. 189-191 ◽  
Author(s):  
S. Amizam ◽  
M. H. Mamat ◽  
Z. Khusaimi ◽  
H. A. Rafaie ◽  
M. Z. Sahdan ◽  
...  

2013 ◽  
Vol 667 ◽  
pp. 407-410
Author(s):  
N.A. Amir ◽  
Zuraida Khusaimi ◽  
Saifollah Abdullah ◽  
Mohamad Rusop

ZnO nanorods were successfully grown on Au coated Si substrate and Si bare substrate. The growth was using sol-gel immersion method at different deposition time which is 2, 4, 6, 8, 10 and 12 hours. In the presence of Au, growth rate of nanorods is much faster as it performs as a catalyst by decreasing the growth time of ZnO nanorods to half compared to growth on Si substrate without Au coated. Using Scanning Electron Microscope (SEM), changes in growth of nanorods at different deposition time was captured and the structural properties are discussed.


2009 ◽  
Vol 24 (6) ◽  
pp. 970-972
Author(s):  
Xiaoxia Zhang ◽  
Ning Chen ◽  
Jianxin Shi ◽  
Menglian Gong ◽  
Jianhua Zhang ◽  
...  

MRS Advances ◽  
2016 ◽  
Vol 1 (13) ◽  
pp. 861-867 ◽  
Author(s):  
Sanghamitra Mandal ◽  
Mohammed Marie ◽  
Omar Manasreh

ABSTRACTAn electrochemical glucose sensor based on zinc oxide (ZnO) nanorods is fabricated, characterized and tested. The ZnO nanorods are synthesized on indium titanium oxide (ITO) coated glass substrate, using the hydrothermal sol-gel technique. The working principle of the sensor under investigation is based on the electrochemical reaction taking place between cathode and anode, in the presence of an electrolyte. A platinum plate, used as the cathode and Nafion/Glucose Oxidase/ZnO nanorods/ITO-coated glass substrate used as anode, is immersed in pH 7.0 phosphate buffer solution electrolyte to test for the presence of glucose. Several amperometric tests are performed on the fabricated sensor to determine the response time, sensitivity and limit of detection of the sensor. A fast response time less than 3 s with a high sensitivity of 1.151 mA cm-2mM-1 and low limit of detection of 0.089 mM is reported. The glucose sensor is characterized using the cyclic voltammetry method in the range from -0.8 – 0.8 V with a voltage scan rate of 100 mV/s.


2021 ◽  
Vol 11 (12) ◽  
pp. 2313-2320
Author(s):  
Jian Zhao ◽  
Wei Li ◽  
Xin Dong ◽  
Jiying Chen

Based on bioactive glasses (BG) of 58S, sol–gel method is used to prepare strontium oxide substituted bioactive glasses (SrO-BG) with different strontium content. SrO-BG and nano hydroxyapatite (HAp) composite materials were synthesized using precipitation method. The phase composition and morphologies of the prepared materials were examined by x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The dissolution and bio-mineralization of SrO-BG and SrO-BG/HAp composites in SBF are investigated by immersion method. The effects of secretion components of macrophages regulated by strontium doped SrO-BG/HAp composites on the osteogenic differentiation (OD) of bone marrow mesenchymal stem cells (BMSCs) are analyzed. The results demonstrate that the SrO-BG can inhibit the dissolution of BG. Different proportions of SrO-BG/HAp composites show good ability to induce HAp in SBF. The bio-mineralization ability of SrO-BG/HAp composites increases with the increase of SrO-BG content. The results of dissolution behavior and bio-mineralization of SrO-BG/HAp composite show that the dissolution rate of each ion can be controlled by adjusting the content of SrO-BG in the composite, and then the degradation rate can effectively be controlled. The results of in vitro experiments show that SrO-BG/HAp composites with 2%, 5% and 8% strontium content are more effective in promoting M2 polarization of macrophages than SrO-BG/HAp composites with 0% strontium content. Among them, 5% strontium doped SrO-BG/HAp has the strongest effect on M2 polarization of macrophages, and the secretion of macrophages regulated by 5% strontium doped SrO-BG/HAp composite is more conducive to bone repair.


Sign in / Sign up

Export Citation Format

Share Document