The effects of pore‐scale fluid distribution on the physical properties of partially saturated tight sandstones

1991 ◽  
Vol 69 (2) ◽  
pp. 1091-1098 ◽  
Author(s):  
Anthony L. Endres ◽  
Rosemary Knight
Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. MR107-MR114 ◽  
Author(s):  
Chunhui Fang ◽  
Baozhi Pan ◽  
Yanghua Wang ◽  
Ying Rao ◽  
Yuhang Guo ◽  
...  

The acoustic property and the P-wave velocity of partially saturated rocks depend not only on the water saturation but also on the pore-scale fluid distribution. Here, we analyzed the pore-scale fluid distribution using nuclear magnetic resonance (NMR) [Formula: see text] spectra, which present the variation of porosity components associated with NMR transverse relaxation time [Formula: see text]. Based on the [Formula: see text] spectra, we classified the pore-scale fluid distribution during water imbibition and drainage into three models: a low-saturation model, a patchy distribution model, and a uniform distribution model. We specifically assigned the low-saturation model to deal with the acoustic property of the rocks at the imbibition starting stage and the drainage final stage because cement softening has a nonnegligible effect. We studied the acoustic properties of sandstone rocks with various pore-scale fluid distributions, at the imbibition process and the drainage process. We confirmed that, once the variations in water saturation and pore-scale fluid distribution are taken into account, the P-wave velocity prediction matches well with the laboratory measurement of samples, representing nearly tight sandstone rocks that are partially saturated with distilled water.


Geophysics ◽  
1991 ◽  
Vol 56 (12) ◽  
pp. 2139-2147 ◽  
Author(s):  
Rosemary Knight

Laboratory measurements of the resistivity of three sandstone samples collected during imbibition (increasing Sw) and drainage (decreasing Sw) show pronounced hysteresis in resistivity throughout much of the saturation range. The variation in resistivity can be related to changes in pore‐scale fluid distribution caused by changes in saturation history. The form of the hysteresis is such that resistivity measured during imbibition is consistently less than that measured, at the same saturation, during drainage. This can be attributed to the presence of conduction at the air/water interface in partially saturated samples; an effect that is enhanced by fluid geometries associated with the imbibition process. The results of this study suggest that the dependence of geophysical data on saturation history should be considered when interpreting data from the unsaturated zone.


2016 ◽  
Author(s):  
Katherine J. Dobson ◽  
Sophia B. Coban ◽  
Sam A. McDonald ◽  
Joanna Walsh ◽  
Robert Atwood ◽  
...  

Abstract. A variable volume flow cell has been integrated with state-of-the-art ultra-high speed synchrotron x-ray tomography imaging. The combination allows the first real time (sub-second) capture of dynamic pore (micron) scale fluid transport processes in 4D (3D + time). With 3D data volumes acquired at up to 20 Hz, we perform in situ experiments that capture high frequency pore-scale dynamics in 5–25 mm diameter samples with voxel (3D equivalent of a pixel) resolution of 2.5 to 3.8 µm. The data are free from motion artefacts, can be spatially registered or collected in the same orientation making them suitable for detailed quantitative analysis of the dynamic fluid distribution pathways and processes. The method presented here are capable of capturing a wide range of high frequency non equilibrium pore-scale processed including wetting, dilution, mixing and reaction phenomena, without sacrificing significant spatial resolution. As well as fast streaming (continuous acquisition) at 20 Hz, it also allows larger-scale and longer term experimental runs to be sampled intermittently at lower frequency (time-lapse imaging); benefiting from fast image acquisition rates to prevent motion blur in highly dynamic systems. This marks a major technical breakthrough for quantification of high frequency pore scale processes: processes that are critical for developing and validating more accurate multiscale flow models through spatially and temporally heterogeneous pore networks.


2010 ◽  
Vol 86 (2) ◽  
pp. 495-515 ◽  
Author(s):  
Dmitriy Silin ◽  
Liviu Tomutsa ◽  
Sally M. Benson ◽  
Tad W. Patzek

2020 ◽  
Author(s):  
Konstantin Romanenko ◽  
Efim Lavrukhin ◽  
Roman Vasilyev ◽  
Kirill Gerke

<p>With the recent progress in soil structure imaging it is now possible to assess the properties of soil samples using pore-scale modelling. In this contribution we focus on saturated hydraulic conductance which can be easily modelled by solving Stokes equation in 3D pore geometry with the help of FDMSS software (Gerke et al., 2018) or pore-networks (Miao et al., 2017). We chose three soil images as obtained using microtomography device which were sampled in Russian Federation (Karsanina et al., 2018). As these are the gray-scale images representing attenuation of X-rays within the studied sample, before performing any modelling we need to classify all gray-scale voxels into pores and solids. Current state-of-the arts methods are represented by local segmentation methods which has two thresholds: 100% pores and 100% solids, the voxels in between are assigned to either pores or solids based on some considerations such as neighbors or by growing pore/solid phases from these 100% areas until they fill the whole space. We utilized such local binarization converging active contours (CAC) method (Sheppard et al., 2004) to segment soil images with manually chosen thresholds. Next, the same images were segmented using convolutional neural network (CNN) with U-net architecture. We compared the simulated saturated hydraulic conductances for images obtained by two different binarization approaches to show that if CNN is trained based on CAC segmentations the resulting physical properties are close to that of the CAC itself. This means that if the true data for CNN segmentation would be available, the conundrum we believe can be solved using multi-scale structure modelling techniques (Gerke et al., 2015; Karsanina and Gerke, 2018), our flow simulations based on CNN binarization would be of high accuracy and would require no operator input. We discuss critical implications of machine learning based segmentations for soil images and what it means as related to pore-scale modelling.</p><p>This research was supported by Russian Science Foundation grant 19-74-10070.</p><p>References:</p><p>Karsanina, M. V., Gerke, K. M., Skvortsova, E. B., Ivanov, A. L., & Mallants, D. (2018). Enhancing image resolution of soils by stochastic multiscale image fusion. Geoderma, 314, 138-145.</p><p>Gerke, K. M., Karsanina, M. V., & Mallants, D. (2015). Universal stochastic multiscale image fusion: an example application for shale rock. Scientific reports, 5, 15880.</p><p>Gerke, K. M., Vasilyev, R. V., Khirevich, S., Collins, D., Karsanina, M. V., Sizonenko, T. O., Korost D.V., Lamontagne S., & Mallants, D. (2018). Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies. Computers & Geosciences, 114, 41-58</p><p>Sheppard, A. P., Sok, R. M., & Averdunk, H. (2004). Techniques for image enhancement and segmentation of tomographic images of porous materials. Physica A: Statistical mechanics and its applications, 339(1-2), 145-151.</p><p>Karsanina, M. V., & Gerke, K. M. (2018). Hierarchical Optimization: Fast and Robust Multiscale Stochastic Reconstructions with Rescaled Correlation Functions. Physical Review Letters, 121(26), 265501.</p><p>Miao, X., Gerke, K. M., & Sizonenko, T. O. (2017). A new way to parameterize hydraulic conductances of pore elements: A step towards creating pore-networks without pore shape simplifications. Advances in Water Resources, 105, 162-172.</p>


Geophysics ◽  
1998 ◽  
Vol 63 (1) ◽  
pp. 154-160 ◽  
Author(s):  
Thierry Cadoret ◽  
Gary Mavko ◽  
Bernard Zinszner

Extensional and torsional wave‐attenuation measurements are obtained at a sonic frequency around 1 kHz on partially saturated limestones using large resonant bars, 1 m long. To study the influence of the fluid distribution, we use two different saturation methods: drying and depressurization. When water saturation (Sw) is higher than 70%, the extensional wave attenuation is found to depend on whether the resonant bar is jacketed. This can be interpreted as the Biot‐Gardner‐White effect. The experimental results obtained on jacketed samples show that, during a drying experiment, extensional wave attenuation is influenced strongly by the fluid content when Sw is between approximately 60% and 100%. This sensitivity to fluid saturation vanishes when saturation is obtained through depressurization. Using a computer‐assisted tomographic (CT) scan, we found that, during depressurization, the fluid distribution is homogeneous at the millimetric scale at all saturations. In contrast, during drying, heterogeneous saturation was observed at high water‐saturation levels. Thus, we interpret the dependence of the extensional wave attenuation upon the saturation method as principally caused by a fluid distribution effect. Torsional attenuation shows no sensitivity to fluid saturation for Sw between 5% and 100%.


Sign in / Sign up

Export Citation Format

Share Document