Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)As

2010 ◽  
Vol 97 (22) ◽  
pp. 222501 ◽  
Author(s):  
M. Endo ◽  
F. Matsukura ◽  
H. Ohno
2002 ◽  
Vol 7 (2) ◽  
pp. 45-52
Author(s):  
L. Jakučionis ◽  
V. Kleiza

Electrical properties of conductive thin films, that are produced by vacuum evaporation on the dielectric substrates, and which properties depend on their thickness, usually are anisotropic i.e. they have uniaxial anisotropy. If the condensate grow on dielectric substrates on which plane electrical field E is created the transverse voltage U⊥ appears on the boundary of the film in the direction perpendicular to E. Transverse voltage U⊥ depends on the angle γ between the applied magnetic field H and axis of light magnetisation. When electric field E is applied to continuous or grid layers, U⊥ and resistance R of layers are changed by changing γ. It means that value of U⊥ is the measure of anisotropy magnitude. Increasing voltage U0 , which is created by E, U⊥ increases to certain magnitude and later decreases. The anisotropy of continuous thin layers is excited by inequality of conductivity tensor components σ0 ≠ σ⊥. The reason of anisotropy is explained by the model which shows that properties of grain boundaries are defined by unequal probability of transient of charge carrier.


Author(s):  
J. Nitta

This chapter focuses on the electron spin degree of freedom in semiconductor spintronics. In particular, the electrostatic control of the spin degree of freedom is an advantageous technology over metal-based spintronics. Spin–orbit interaction (SOI), which gives rise to an effective magnetic field. The essence of SOI is that the moving electrons in an electric field feel an effective magnetic field even without any external magnetic field. Rashba spin–orbit interaction is important since the strength is controlled by the gate voltage on top of the semiconductor’s two-dimensional electron gas. By utilizing the effective magnetic field induced by the SOI, spin generation and manipulation are possible by electrostatic ways. The origin of spin-orbit interactions in semiconductors and the electrical generation and manipulation of spins by electrical means are discussed. Long spin coherence is achieved by special spin helix state where both strengths of Rashba and Dresselhaus SOI are equal.


1967 ◽  
Vol 45 (4) ◽  
pp. 1481-1495 ◽  
Author(s):  
Myer Bloom ◽  
Eric Enga ◽  
Hin Lew

A successful transverse Stern–Gerlach experiment has been performed, using a beam of neutral potassium atoms and an inhomogeneous time-dependent magnetic field of the form[Formula: see text]A classical analysis of the Stern–Gerlach experiment is given for a rotating inhomogeneous magnetic field. In general, when space quantization is achieved, the spins are quantized along the effective magnetic field in the reference frame rotating with angular velocity ω about the z axis. For ω = 0, the direction of quantization is the z axis (conventional Stern–Gerlach experiment), while at resonance (ω = −γH0) the direction of quantization is the x axis in the rotating reference frame (transverse Stern–Gerlach experiment). The experiment, which was performed at 7.2 Mc, is described in detail.


2007 ◽  
Vol 101 (11) ◽  
pp. 113919 ◽  
Author(s):  
S. V. Vasiliev ◽  
V. V. Kruglyak ◽  
M. L. Sokolovskii ◽  
A. N. Kuchko

2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Luke R. St. Marie ◽  
Chieh-I Liu ◽  
I-Fan Hu ◽  
Heather M. Hill ◽  
Dipanjan Saha ◽  
...  

2014 ◽  
Vol 11 (5-6) ◽  
pp. 986-988
Author(s):  
A. Chizhik ◽  
M. Ipatov ◽  
A. Stupakiewicz ◽  
A. Zhukov ◽  
A. Maziewski ◽  
...  

2018 ◽  
Vol 185 ◽  
pp. 04028
Author(s):  
Alexei Dmitriev

Kinetics of magnetization relaxation of the exotic ε-In0.24Fe1.76O3 nanoparticles under applied magnetic field has been studied. The fluctuation field and the activation volume have been calculated from the magnetic viscosity data. The relation between magnetic viscosity and magnetic noise caused by the random thermally activated magnetization reversal of a single nanoparticle has been established. Stepped sweeping of magnetic field expands the windows of experimentally detectable magnetic fluctuations. The changes in the reversal magnetic field provide ε-In0.24Fe1.76O3 nanoparticles scanning and sorting them by magnetic noise frequency.


Sign in / Sign up

Export Citation Format

Share Document