Plasma ion implantation of nitrogen into silicon: Characterization of the depth profiles of implanted ions

1994 ◽  
Vol 76 (10) ◽  
pp. 5666-5675 ◽  
Author(s):  
John J. Vajo ◽  
John D. Williams ◽  
Ronghua Wei ◽  
Robert G. Wilson ◽  
Jesse N. Matossian
2016 ◽  
Vol 35 (1) ◽  
pp. 72-80 ◽  
Author(s):  
M. Cutroneo ◽  
A. Mackova ◽  
L. Torrisi ◽  
V. Lavrentiev

AbstractThis work reports a comparative study of laser ion implantation mainly performed at the Nuclear Physics Institute in Rez (Czech Republic), National Institute of Nuclear Physics (Italy), and the Plasma Physics Laboratory at the University of Messina (Italy) using different approaches. Thick metallic targets were irradiated in vacuum by a focused laser beam to generate plasma-producing multi-energy and multi-species ions. A post-acceleration system was employed in order to increase the energy of the produced ions and to generate ion beams suitable to be implanted in different substrates. The ion dose was controlled by the laser repetition rate and the time of irradiation. Rutherford backscattering analysis was carried out to evaluate the integral amount of implanted ion species, the concentration–depth profiles, the ion penetration depth, and the uniformity of depth profiles for ions laser implanted into monocrystalline substrates. The laser implantation under normal conditions and in post-acceleration configuration will be discussed on the basis of the characterization of the implanted substrates.


2020 ◽  
pp. 110541
Author(s):  
C.A. Hernández-Gutiérrez ◽  
Yuriy Kudriavtsev ◽  
Dagoberto Cardona ◽  
A.G. Hernández ◽  
J.L. Camas-Anzueto

1998 ◽  
Vol 285 (3-4) ◽  
pp. 216-220 ◽  
Author(s):  
T. Cabioc'h ◽  
A. Kharbach ◽  
A. Le Roy ◽  
J.P. Rivière

2021 ◽  
Author(s):  
Andrew Cheng ◽  
Elizabetta Dotto ◽  
Eugene Fahnestock ◽  
Vincenzo Della Corte ◽  
Nancy Chabot ◽  
...  

<p>The NASA Double Asteroid Redirection Test (DART) mission will demonstrate asteroid deflection by a kinetic impactor. DART will impact Dimorphos, the secondary member of the (65803) Didymos system, in late September to early October, 2022 in order to change the binary orbit period. DART will carry a 6U CubeSat called LICIACube, contributed by the Italian Space Agency, to document the DART impact and to observe the impact ejecta. LICIACube will be released by DART 10 days prior to Didymos encounter, and LICIACube will fly by Dimorphos at closest approach distance of about 51 km and with a closest approach time delay of about 167 s after the DART impact. LICIACube will observe the structure and evolution of the DART impact ejecta plume and will obtain images of the surfaces of both bodies at best ground sampling about 1.4 m per pixel. LICIACube imaging importantly includes the non-impact hemisphere of the target body, the side not imaged by DART.</p> <p> </p> <p>The LICIACube flyby trajectory, notably the closest approach distance and the time delay of closest approach, are designed to optimize the study of ejecta plume evolution without exposing the satellite to impact hazard. LICIACube imaging will determine the direction of the ejecta plume and the ejection angles, and will further help to determine the ejecta momentum transfer efficiency <em>β</em>. The ejecta plume structure, as it evolves over time, is determined by the amount of ejecta that has reached a given altitude at a given time. The LICIACube plume images enable characterization of the ejecta mass versus velocity distribution, which is strongly dependent on target properties like strength and porosity and is therefore a powerful diagnostic of the DART impact, complementary to measurements of the DART impact crater by the ESA Hera mission which will arrive at Didymos in 2026. Hera will measure crater radius and crater volume to determine the total volume of ejecta, which together with a ejecta mass-velocity distribution gives a full characterization of the DART impact.</p> <p> </p> <p>Models of the ejecta plume evolution as imaged by LICIACube show how LICIACube images can discriminate between different target physical properties (mainly strength and porosity), thereby allowing inferences of the magnitude of the ejecta momentum. Measured ejecta plume optical depth profiles can distinguish between gravity-controlled and strength-controlled impact cases and help determine target physical properties. LICIACube ejecta plume images further provide information on the direction of the ejecta momentum as well as the magnitude, requiring full 2-D simulations of the plume images. We will present new simulation model optical depth profiles across the plume at arbitrary positions.</p> <p><br />We thank NASA for support of the DART project at JHU/APL, under Contract # NNN06AA01C, Task Order # NNN15AA05T. The Italian LICIACube team acknowledges financial support from Agenzia Spaziale Italiana (ASI, contract No. 2019-31-HH.0 CUP<br />F84I190012600).</p>


Author(s):  
C. Chauvin ◽  
J. F. Currie ◽  
S. Poulin-Dandurand ◽  
E. Sacher ◽  
A. Yelon ◽  
...  

Author(s):  
Shin'ichi Yamamura ◽  
Tadamasa Kimura ◽  
Shigemi Yugo ◽  
Riichiro Saito ◽  
Michio Murata ◽  
...  

Author(s):  
M.A. Draganskia ◽  
P. Olivero ◽  
S. Rubanov ◽  
P. Spizziri ◽  
P.N. Johnston ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document