On effective electric field nano-octupoling in two dimensions

2011 ◽  
Vol 135 (2) ◽  
pp. 024110
Author(s):  
A. C. Mitus ◽  
G. Pawlik ◽  
J. Zyss
2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


The Analyst ◽  
2021 ◽  
Author(s):  
Fuxing Xu ◽  
Weimin Wang ◽  
Bingjun Qian ◽  
Liuyu Jin ◽  
Chuanfan Ding

The effective electric field radius is a fundamental parameter of ion trap which has great influence on ion trapping capability, signal intensity, mass range and some other properties of ion...


Particles ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 208-230 ◽  
Author(s):  
Stanislav A. Smolyansky ◽  
Anatolii D. Panferov ◽  
David B. Blaschke ◽  
Narine T. Gevorgyan

On the basis of the well-known kinetic description of e − e + vacuum pair creation in strong electromagnetic fields in D = 3 + 1 QED we construct a nonperturbative kinetic approach to electron-hole excitations in graphene under the action of strong, time-dependent electric fields. We start from the simplest model of low-energy excitations around the Dirac points in the Brillouin zone. The corresponding kinetic equations are analyzed by nonperturbative analytical and numerical methods that allow to avoid difficulties characteristic for the perturbation theory. We consider different models for external fields acting in both, one and two dimensions. In the latter case we discuss the nonlinear interaction of the orthogonal currents in graphene which plays the role of an active nonlinear medium. In particular, this allows to govern the current in one direction by means of the electric field acting in the orthogonal direction. Investigating the polarization current we detected the existence of high frequency damped oscillations in a constant external electric field. When the electric field is abruptly turned off residual inertial oscillations of the polarization current are obtained. Further nonlinear effects are discussed.


2001 ◽  
Vol 680 ◽  
Author(s):  
Wenhua Gu ◽  
Soo Jin Chua ◽  
Xin Hai Zhang

ABSTRACTThe design of Gallium Nitride based Metal-Semiconductor-Metal Ultra-Violet detector is discussed. We introduce a simulation model using Medici to describe the performances of such detectors. Structure parameters, such as the inter-digitated electrode dimension and the GaN layer thickness, are optimized for response current and time using this model. The simulation results can be explained by the variation of depletion region. We introduce the “effective electric field intensity” to describe the depletion region. The relationship between the “effective electric field intensity” and structure parameters are simulated and discussed.


2007 ◽  
Vol 88 (4) ◽  
pp. 307-324 ◽  
Author(s):  
Habib Ammari ◽  
Hyeonbae Kang ◽  
Hyundae Lee ◽  
Jungwook Lee ◽  
Mikyoung Lim

1983 ◽  
Vol 117 (1) ◽  
pp. K23-K26 ◽  
Author(s):  
H. Van Cong ◽  
S. Brunet ◽  
S. Charar ◽  
S. Benet ◽  
C. Delseny ◽  
...  

Author(s):  
Yin Ma ◽  
Tong Li ◽  
Jun Yan ◽  
Xiaorong Wang ◽  
Ji Gao ◽  
...  

Electric field assisted combustion is an important means to improve fuel combustion efficiency. This paper conducts extensive research on flame characteristics under different forms and different application methods of electric fields, emission of soot particles and simulation status. Different flame parameter measurement methods will lead to different degrees of error, and perfect numerical simulation can make simple predictions on experimental data. Most of the current numerical simulations are in two dimensions, and it is necessary to develop a complete and accurate three-dimensional model to simulate and predict the characteristics of the flame under an electric field. The emission of soot particles is also affected by the electric field, and reasonable electric field parameters can greatly reduce the emission of soot particles. It is recommended to conduct centralized measurement of different fuels under the electric field under high pressure and temperature conditions, so as to be able to develop a wider and more accurate flame dynamics and chemical model under the electric field.


2018 ◽  
Vol 3 (1) ◽  
pp. 01
Author(s):  
Nassima M ziou ◽  
Hani Benguesmia ◽  
Hilal Rahali

The electrical effects can be written by two magnitudes the field and the electrostatic potential, for the determination of the distribution of the field and the electric potential along the leakage distance of the polluted insulator, the comsol multiphysics software based on the finite element method will be used. The objective of this paper is the modeling electric field and potential distribution in Two Dimensions by the Finite Element Method on a model of insulator simulating the 1512L outdoor insulator used by the Algerian company of electricity and gas (SONELGAZ). This model is under different conductivity, applied voltage, position of clean layer and width of clean layer. The computer simulations are carried out by using the COMSOL multiphysics software. This paper describes how Comsol Multiphysics have been used for modeling of the insulator using electrostatic 2D simulations in the AC/DC module. Numerical results showed a good agreement.


2003 ◽  
Vol 17 (18n20) ◽  
pp. 3407-3410
Author(s):  
Jan Koláček ◽  
Pavel Lipavský

For type II superconductors, Josephson has shown that vortices moving with velocity v L create an effective electric field E′= -v L ×B V . By definition the effective electric field is gradient of the electrochemical potential, what is the quantity corresponding to voltage observed with the use of Ohmic contacts. It relates to the true electric field E via the local chemical potential μ as E′=E-∇μ/e. We argue that at low temperatures the true electric field in the bulk can be approximated by a modified Josephson relation E=(v S -v L )×B V , where v S is the condensate velocity.


2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


Sign in / Sign up

Export Citation Format

Share Document