Measurement of the effective electric field radius on Digital ion trap spectrometer

The Analyst ◽  
2021 ◽  
Author(s):  
Fuxing Xu ◽  
Weimin Wang ◽  
Bingjun Qian ◽  
Liuyu Jin ◽  
Chuanfan Ding

The effective electric field radius is a fundamental parameter of ion trap which has great influence on ion trapping capability, signal intensity, mass range and some other properties of ion...

2017 ◽  
Vol 31 (33) ◽  
pp. 1750310 ◽  
Author(s):  
Jia-Ning Li ◽  
San-Lue Hu ◽  
Hao-Yu Dong ◽  
Xiao-Ying Xu ◽  
Jia-Fu Wang ◽  
...  

Under the tuning of an external electric field, the variation of the geometric structures and the band gaps of the wurtzite semiconductors ZnS, ZnO, BeO, AlN, SiC and GaN have been investigated by the first-principles method based on density functional theory. The stability, density of states, band structures and the charge distribution have been analyzed under the electric field along (001) and (00[Formula: see text]) directions. Furthermore, the corresponding results have been compared without the electric field. According to our calculation, we find that the magnitude and the direction of the electric field have a great influence on the electronic structures of the wurtzite materials we mentioned above, which induce a phase transition from semiconductor to metal under a certain electric field. Therefore, we can regulate their physical properties of this type of semiconductor materials by tuning the magnitude and the direction of the electric field.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2656-2667
Author(s):  
Feihu Chang ◽  
Yanhe Liu ◽  
Bin Zhang ◽  
Wansi Fu ◽  
Pengfei Jiang ◽  
...  

In the process of applying the high-frequency heating technology to bamboo heat treatment, controlling the material temperature has a great influence on the quality of bamboo forming. Therefore, research on the heat transfer mechanism of high-frequency heating of arc-shaped bamboo pieces is of great importance. In this paper, the influence of different moisture content, chord length, and plate voltage on the heating rate of arc-shaped bamboo pieces under high-frequency electric field were studied. The moisture content of bamboo had the most remarkable effect on the heating rate. With increased moisture content, the temperature rose faster. The selection of the plate voltage had an obvious influence on the heating. If the voltage was low, the heating rate was too slow, the heating time was long, or the voltage was high, it was easy to cause electric field breakdown and damage the bamboo pieces. As the chord length decreased, the heating rate gradually increased. When the radian of the arc-shaped bamboo pieces could be ignored, the heating rate was the fastest. The results showed that under certain conditions, the arc-shaped bamboo pieces showed a good heat treatment effect in a high-frequency electric field.


2020 ◽  
Vol 458 ◽  
pp. 116437
Author(s):  
Kenneth W. Lee ◽  
Christopher P. Harrilal ◽  
Liangxuan Fu ◽  
Gregory S. Eakins ◽  
Scott A. McLuckey

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Xiangying Guo ◽  
Pan Jiang ◽  
Dongxing Cao

Based on the structures of unmanned aerial vehicle (UAV) wings, nonlinear dynamic analysis of macrofiber composite (MFC) laminated shells is presented in this paper. The effects of piezoelectric properties and aerodynamic forces on the dynamic stability of the MFC laminated shell are studied. Firstly, under the flow condition of ideal incompressible fluid, the thin airfoil theory is employed to calculate the effects of the mean camber line to obtain the circulation distribution of the wings in subsonic air flow. The steady aerodynamic lift on UAV wings is derived by using the Kutta–Joukowski lift theory. Then, considering the geometric nonlinearity and piezoelectric properties of the MFC material, the nonlinear dynamic model of the MFC laminated shell is established with Hamilton’s principles and the Galerkin method. Next, the effects of electric field, external excitation force, and nonlinear parameters on the stability of the system are studied under 1 : 1 internal resonance and the effects of material parameters on the natural frequency of the structure are also analyzed. Furthermore, the influence of the aerodynamic forces and electric field on the nonlinear dynamic responses of MFC laminated shells is discussed by numerical simulation. The results indicate that the electric field and external excitation have great influence on the structural dynamic responses.


2019 ◽  
Vol 99 (6) ◽  
Author(s):  
Crystal Noel ◽  
Maya Berlin-Udi ◽  
Clemens Matthiesen ◽  
Jessica Yu ◽  
Yi Zhou ◽  
...  

2020 ◽  
Vol 10 (7) ◽  
pp. 2222 ◽  
Author(s):  
Elia Perego ◽  
Lucia Duca ◽  
Carlo Sias

In the development of atomic, molecular, and optical (AMO) physics, atom-ion hybrid systems are characterized by the presence of a new tool in the experimental AMO toolbox: atom-ion interactions. One of the main limitations in state-of-the-art atom-ion experiments is represented by the micromotion component of the ions’ dynamics in a Paul trap, as the presence of micromotion in atom-ion collisions results in a heating mechanism that prevents atom-ion mixtures from undergoing a coherent evolution. Here, we report the design and the simulation of a novel ion trapping setup especially conceived of for integration with an ultracold atoms experiment. The ion confinement is realized by using an electro-optical trap based on the combination of an optical and an electrostatic field, so that no micromotion component will be present in the ions’ dynamics. The confining optical field is generated by a deep optical lattice created at the crossing of a bow-tie cavity, while a static electric quadrupole ensures the ions’ confinement in the plane orthogonal to the optical lattice. The setup is also equipped with a Paul trap for cooling the ions produced by photoionization of a hot atomic beam, and the design of the two ion traps facilitates the swapping of the ions from the Paul trap to the electro-optical trap.


2001 ◽  
Vol 680 ◽  
Author(s):  
Wenhua Gu ◽  
Soo Jin Chua ◽  
Xin Hai Zhang

ABSTRACTThe design of Gallium Nitride based Metal-Semiconductor-Metal Ultra-Violet detector is discussed. We introduce a simulation model using Medici to describe the performances of such detectors. Structure parameters, such as the inter-digitated electrode dimension and the GaN layer thickness, are optimized for response current and time using this model. The simulation results can be explained by the variation of depletion region. We introduce the “effective electric field intensity” to describe the depletion region. The relationship between the “effective electric field intensity” and structure parameters are simulated and discussed.


Sign in / Sign up

Export Citation Format

Share Document