scholarly journals Recent progress in applying gauge/gravity duality to quark-gluon plasma physics

Author(s):  
Andreas Karch
2010 ◽  
Vol 2010 ◽  
pp. 1-141 ◽  
Author(s):  
Felix Rust

We use the gauge/gravity duality to investigate various properties of strongly coupled gauge theories, which we interpret as models for the quark-gluon plasma (QGP). In particular, we use variants of the D3/D7 setup as an implementation of the top-down approach of connecting string theory with phenomenologically relevant gauge theories. We focus on the effects of finite temperature and finite density on fundamental matter in the holographic quark-gluon plasma, which we model as theN=2hypermultiplet in addition to theN=4gauge multiplet of supersymmetric Yang-Mills theory. We use a setup in which we can describe the holographic plasma at finite temperature and either baryon or isospin density and investigate the properties of the system from three different viewpoints. (i) We study meson spectra. Our observations at finite temperature and particle density are in qualitative agreement with phenomenological models and experimental observations. They agree with previous publications in the according limits. (ii) We study the temperature and density dependence of transport properties of fundamental matter in the QGP. In particular, we obtain diffusion coefficients. Furthermore, in a kinetic model we estimate the effects of the coupling strength on meson diffusion and therewith equilibration processes in the QGP. (iii) We observe the effects of finite temperature and density on the phase structure of fundamental matter in the holographic QGP. We trace out the phase transition lines of different phases in the phase diagram.


2020 ◽  
Vol 2 ◽  
pp. 1
Author(s):  
N. G. Antoniou

Incorporating fractal geometry in the Regge-Mueller approach to strong interaction dynamics one may formulate a model for the one-dimensional critical sector of the hadronic 5-matrix in a high energy collision. A non conventional component of the correlation functions in rapidity space is obtained, the phenomenological implications of which are related with the intermittency effects in quark-gluon plasma physics.


2021 ◽  
Author(s):  
◽  
Mark Musonda Webster Shawa

This thesis discusses the prospect of finding the gravitational dual to the strongly coupled conformal fluids, with a special interest in the quark-gluon plasma. Such a task can be achieved by matching certain physical observables of two apparently different theories that are dually related owing to the fact that the same string theory can be viewed in two different ways. This is particularly useful when one of the theories is intractable while its dual is manageable. We begin by postulating a particular type of gravitational theory from which we determine graviton scattering amplitudes in a special regime of high momentum. Using the gauge–gravity duality dictionary, the graviton scattering amplitudes can be mapped to stress-tensor correlation functions in the gauge theory. One of the outcomes of high-energy scattering experiments involving the quark-gluon plasma is stress-tensor correlator data. This thesis provides an algorithm for matching graviton scattering amplitudes with stress-tensor correlator data which, in principle, can be used to identify the gravitational dual to the quark-gluon plasma.


2013 ◽  
Vol 28 (08) ◽  
pp. 1330005 ◽  
Author(s):  
ALEXANDER ROTHKOPF

The in-medium physics of heavy quarkonium is an ideal proving ground for our ability to connect knowledge about the fundamental laws of physics to phenomenological predictions. One possible route to take is to attempt a description of heavy quark bound states at finite temperature through a Schrödinger equation with an instantaneous potential. Here we review recent progress in devising a comprehensive approach to define such a potential from first principles QCD and extract its, in general complex, values from non-perturbative lattice QCD simulations. Based on the theory of open quantum systems we will show how to interpret the role of the imaginary part in terms of spatial decoherence by introducing the concept of a stochastic potential. Shortcomings as well as possible paths for improvement are discussed.


1997 ◽  
Vol 281 (5-6) ◽  
pp. 401
Author(s):  
Jan-e Alam ◽  
Sibaji Raha ◽  
Bikash Sinha

2010 ◽  
Vol 25 (02n03) ◽  
pp. 310-318
Author(s):  
JOHN H. SCHWARZ

The study of AdS/CFT (or gauge/gravity) duality has been one of the most active and illuminating areas of research in string theory over the past decade. The scope of its relevance and the insights it is providing seem to be ever expanding. In this talk I briefly describe some of the attempts to explore how the duality works for maximally supersymmetric systems.


Sign in / Sign up

Export Citation Format

Share Document