High resolution 14N NMR in solids: Single crystals of ammonium hydrogen oxalate hemihydrate

1977 ◽  
Vol 66 (12) ◽  
pp. 5433-5438 ◽  
Author(s):  
E. K. Wolff ◽  
R. G. Griffin ◽  
C. Watson
1977 ◽  
Vol 67 (3) ◽  
pp. 917 ◽  
Author(s):  
H. van Willigen ◽  
R. A. Haberkorn ◽  
R. G. Griffin

Author(s):  
W.W. Adams ◽  
G. Price ◽  
A. Krause

It has been shown that there are numerous advantages in imaging both coated and uncoated polymers in scanning electron microscopy (SEM) at low voltages (LV) from 0.5 to 2.0 keV compared to imaging at conventional voltages of 10 to 20 keV. The disadvantages of LVSEM of degraded resolution and decreased beam current have been overcome with the new generation of field emission gun SEMs. In imaging metal coated polymers in LVSEM beam damage is reduced, contrast is improved, and charging from irregularly shaped features (which may be unevenly coated) is reduced or eliminated. Imaging uncoated polymers in LVSEM allows direct observation of the surface with little or no charging and with no alterations of surface features from the metal coating process required for higher voltage imaging. This is particularly important for high resolution (HR) studies of polymers where it is desired to image features 1 to 10 nm in size. Metal sputter coating techniques produce a 10 - 20 nm film that has its own texture which can obscure topographical features of the original polymer surface. In examining thin, uncoated insulating samples on a conducting substrate at low voltages the effect of sample-beam interactions on image formation and resolution will differ significantly from the effect at higher accelerating voltages. We discuss here sample-beam interactions in single crystals on conducting substrates at low voltages and also present the first results on HRSEM of single crystal morphologies which show some of these effects.


2018 ◽  
Vol 51 (6) ◽  
pp. 1616-1622 ◽  
Author(s):  
Victor Asadchikov ◽  
Alexey Buzmakov ◽  
Felix Chukhovskii ◽  
Irina Dyachkova ◽  
Denis Zolotov ◽  
...  

This article describes complete characterization of the polygonal dislocation half-loops (PDHLs) introduced by scratching and subsequent bending of an Si(111) crystal. The study is based on the X-ray topo-tomography technique using both a conventional laboratory setup and the high-resolution X-ray image-detecting systems at the synchrotron facilities at KIT (Germany) and ESRF (France). Numerical analysis of PDHL images is performed using the Takagi–Taupin equations and the simultaneous algebraic reconstruction technique (SART) tomographic algorithm.


2016 ◽  
Vol 18 (6) ◽  
pp. 4902-4910 ◽  
Author(s):  
J. Ole Brauckmann ◽  
J. W. G. (Hans) Janssen ◽  
Arno P. M. Kentgens

To be able to study mass-limited samples and small single crystals, a triple resonance micro-magic angle spinning (μMAS) probehead for the application of high-resolution solid-state NMR of nanoliter samples was developed.


Sign in / Sign up

Export Citation Format

Share Document