scholarly journals Shear wave measurements in shock-induced, high-pressure phases

1994 ◽  
Author(s):  
J. B. Aidun
2003 ◽  
Vol 81 (1-2) ◽  
pp. 47-53 ◽  
Author(s):  
M B Helgerud ◽  
W F Waite ◽  
S H Kirby ◽  
A Nur

We report on compressional- and shear-wave-speed measurements made on compacted polycrystalline sI methane and sII methane–ethane hydrate. The gas hydrate samples are synthesized directly in the measurement apparatus by warming granulated ice to 17°C in the presence of a clathrate-forming gas at high pressure (methane for sI, 90.2% methane, 9.8% ethane for sII). Porosity is eliminated after hydrate synthesis by compacting the sample in the synthesis pressure vessel between a hydraulic ram and a fixed end-plug, both containing shear-wave transducers. Wave-speed measurements are made between –20 and 15°C and 0 to 105 MPa applied piston pressure. PACS No.: 61.60Lj


2007 ◽  
Vol 23 (4) ◽  
pp. 791-808 ◽  
Author(s):  
Brent L. Rosenblad ◽  
Jianhua Li ◽  
Farn-Yuh Menq ◽  
Kenneth H. Stokoe

Shear wave velocity ( VS) profiles to depths of approximately 200 m were developed from active-source surface wave velocity measurements in the Mississippi Embayment region of the Central United States. Soil deposits in this region are hundreds of meters thick, but are poorly characterized at depths below 60 m. Measurements were performed at five locations in Arkansas and Tennessee with a maximum distance between sites of approximately 130 km. The median VS profile calculated from the five profiles is in good agreement with a generic reference VS profile for the Mississippi Embayment that has been used in recent site response studies. The near-surface VS profiles at the five sites were remarkably consistent with average shear wave velocities in the top 30 m ( VS30), varying by less than 10%. Increasing variability between the VS profiles was observed at greater depths. The variability between VS profiles was shown to be correlated with changes in lithology at two of the sites where nearby lithologic information was available.


Author(s):  
Chia-Lun Yeh ◽  
Po-Ling Kuo ◽  
Jean-Luc Gennisson ◽  
Javier Brum ◽  
Mickael Tanter ◽  
...  
Keyword(s):  

Geophysics ◽  
1978 ◽  
Vol 43 (5) ◽  
pp. 1014-1017
Author(s):  
I. J. Fritz

The measurement of ultrasonic velocities at high pressure in minerals and rocks provides information pertinent to a variety of geophysical and engineering problems such as those of determining the state of matter in the earth's interior, understanding the propagation of seismic waves, and characterizing mechanical behavior of materials that are important in mining technology. In recent years there have been a number of reported high pressure sound velocity measurements in various kinds of limestone. (A concise review of this work can be found in a recent paper by Singh and Kennedy, 1974.) Such measurements continue to be of interest because of the relationship to shock‐wave propagation properties (Grady et al, 1977). From the previous measurements it has been found that the phase transitions in calcite, which is the main constituent of limestone, strongly influence the sound velocities. The phase transitions in pure calcite occur at 14.5 kbar (calcite I–II) and 17.4 kbar (calcite II–III) (Singh and Kennedy, 1974); however, because the transitions may be shifted in pressure and spread out over a range of pressures in a rock, it is necessary to make measurements to pressures in excess of 20 kbar in order to characterize the effects of the transitions. To date there has been only one experimental study of the effect of the II–III transition on sound propagation, namely the longitudinal wave measurements in Oak Hall limestone made by Wang and Meltzer (1973). In order to further characterize the effect of the II–III transition on sound propagation in limestone, we have made measurements to 25 kbar on Solenhofen limestone. We were able to measure both longitudinal and transverse velocities over the full pressure range; thus, our measurements represent the first study of the effect of the II–III transition on shear wave propagation under conditions of hydro static pressure.


Sign in / Sign up

Export Citation Format

Share Document