Estimating Shear-wave Transverse Isotropy of Fast Formation From Borehole Flexural-wave Measurements

Author(s):  
S. Xu ◽  
X.M. Tang ◽  
Y.D. Su ◽  
C.X. Zhuang
Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. D47-D55 ◽  
Author(s):  
Song Xu ◽  
Xiao-Ming Tang ◽  
Yuan-Da Su ◽  
Sheng-Qing Lee ◽  
Chun-Xi Zhuang

Many earth formations are characterized as transversely isotropic (TI) media. In acoustic logging through a vertical borehole, the S-wave TI property has traditionally been determined from borehole monopole Stoneley-wave measurements, but the feasibility of shear-TI estimation from dipole flexural waves has not been fully investigated. We have developed a methodology to determine the TI parameters from borehole dipole-flexural wave data. Our analysis shows that the Stoneley wave is sensitive to the TI property mainly in an acoustically slow formation, and the sensitivity diminishes when the formation becomes faster. The advantage of the flexural wave over the Stoneley wave is that the former wave is sensitive to the TI property in the slow and fast formations, provided the wave measurement is made in a broad frequency range in which the flexural-wave dispersion characteristics from low to high frequencies can be used. By calculating the theoretical flexural-wave dispersion curve for the TI formation and using it to fit the measured wave dispersion data, we can simultaneously determine the vertical and horizontal S-wave velocities, from which the S-wave TI parameter is obtained. Application of our methodology to field data processing shows that the TI parameter estimated from the flexural wave is almost identical to that from the Stoneley wave for a slow formation. For a fast formation, the flexural-wave result is more accurate and reliable compared with the Stoneley-wave result. Our study, thus, introduces a novel application of dipole acoustic logging.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. D121-D132
Author(s):  
Yang-Hu Li ◽  
Song Xu ◽  
Can Jiang ◽  
Yuan-Da Su ◽  
Xiao-Ming Tang

Seismic-wave anisotropy has long been an important topic in the exploration and development of unconventional reservoirs, especially in shales, which are commonly characterized as transversely isotropic ([TI] or vertical TI [VTI]) media. At present, the shear-wave (S-wave) TI properties have mainly been determined from monopole Stoneley- or dipole flexural-wave measurements in wireline acoustic logging, but the feasibility of those obtained from logging-while-drilling (LWD) acoustic data needs to be established. We have developed a joint inversion method for simultaneously determining formation S-wave transverse isotropy and vertical velocity from LWD multipole acoustic data. Our theoretical analysis shows that the presence of anisotropy strongly influences LWD Stoneley- and quadrupole-wave dispersion characteristics. Although the monopole Stoneley and quadrupole waves are sensitive to the formation S-wave TI parameters, they suffer from the typical nonuniqueness problem when using the individual-wave data to invert parameters alone. Thus, the respective dispersion data can be jointly used to estimate the formation S-wave TI properties. By the joint inversion, the nonuniqueness problem in the parameter inversion can also be effectively alleviated. The feasibility of the method has been verified by the processing results of theoretical synthetic data and field LWD acoustic-wave data. Therefore, the result offers an effective method for evaluating VTI formation anisotropy from acoustic LWD data.


2007 ◽  
Vol 23 (4) ◽  
pp. 791-808 ◽  
Author(s):  
Brent L. Rosenblad ◽  
Jianhua Li ◽  
Farn-Yuh Menq ◽  
Kenneth H. Stokoe

Shear wave velocity ( VS) profiles to depths of approximately 200 m were developed from active-source surface wave velocity measurements in the Mississippi Embayment region of the Central United States. Soil deposits in this region are hundreds of meters thick, but are poorly characterized at depths below 60 m. Measurements were performed at five locations in Arkansas and Tennessee with a maximum distance between sites of approximately 130 km. The median VS profile calculated from the five profiles is in good agreement with a generic reference VS profile for the Mississippi Embayment that has been used in recent site response studies. The near-surface VS profiles at the five sites were remarkably consistent with average shear wave velocities in the top 30 m ( VS30), varying by less than 10%. Increasing variability between the VS profiles was observed at greater depths. The variability between VS profiles was shown to be correlated with changes in lithology at two of the sites where nearby lithologic information was available.


Author(s):  
Chia-Lun Yeh ◽  
Po-Ling Kuo ◽  
Jean-Luc Gennisson ◽  
Javier Brum ◽  
Mickael Tanter ◽  
...  
Keyword(s):  

Geophysics ◽  
2011 ◽  
Vol 76 (4) ◽  
pp. E127-E139 ◽  
Author(s):  
Robert K. Mallan ◽  
Carlos Torres-Verdín ◽  
Jun Ma

A numerical simulation study has been made of borehole sonic measurements that examined shoulder-bed, anisotropy, and mud-filtrate invasion effects on frequency-dispersion curves of flexural and Stoneley waves. Numerical simulations were considered for a range of models for fast and slow formations. Computations are performed with a Cartesian 3D finite-difference time-domain code. Simulations show that presence of transverse isotropy (TI) alters the dispersion of flexural and Stoneley waves. In slow formations, the flexural wave becomes less dispersive when the shear modulus (c44) governing wave propagation parallel to the TI symmetry axis is lower than the shear modulus (c66) governing wave propagation normal to the TI symmetry axis; conversely, the flexural wave becomes more dispersive when c44 > c66. Dispersion decreases by as much as 30% at higher frequencies for the considered case where c44 < c66. Dispersion of Stoneley waves, on the other hand, increases in TI formations when c44 > c66 and decreases when c44 < c66. Dispersion increases by more than a factor of 2.5 at higher frequencies for the considered case where c44 < c66. Simulations also indicate that the impact of invasion on flexural and Stoneley dispersions can be altered by the presence of TI. For the case of a slow formation and TI, where c44 decreases from the isotropic value, separation between dispersion curves for cases with and without the presence of a fast invasion zone increases by as much as 33% for the flexural wave and by as much as a factor of 1.4 for the Stoneley wave. Lastly, presence of a shoulder bed intersecting the sonic tool at high dip angles can alter flexural dispersion significantly at low frequencies. For the considered case of a shoulder bed dipping at 80°, ambiguity in the flexural cutoff frequency might lead to shear-wave velocity errors of 8%–10%.


Sign in / Sign up

Export Citation Format

Share Document