High-speed atomic force microscope combined with single-molecule fluorescence microscope

2013 ◽  
Vol 84 (7) ◽  
pp. 073706 ◽  
Author(s):  
Shingo Fukuda ◽  
Takayuki Uchihashi ◽  
Ryota Iino ◽  
Yasutaka Okazaki ◽  
Masato Yoshida ◽  
...  
Nanoscale ◽  
2018 ◽  
Vol 10 (36) ◽  
pp. 17112-17116 ◽  
Author(s):  
Manuel R. Uhlig ◽  
Carlos A. Amo ◽  
Ricardo Garcia

Atomic force microscope based single-molecule force spectroscopy provides a description of a variety of intermolecular interactions such as those occurring between receptor molecules and their ligands.


2004 ◽  
Vol 823 ◽  
Author(s):  
C.P. Collier ◽  
M.J. Esplandiu ◽  
V.G. Bittner ◽  
I.R. Shapiro

AbstractThe observation of spectroscopic signals in response to mechanically induced changes in biological macromolecules can be enabled at an unprecedented level of resolution by coupling single-molecule manipulation/sensing using carbon nanotubes with single-molecule fluorescence imaging. Proteins, DNA and other biomolecules can be attached to nanotubes to give highly specific single-molecule probes for the investigation of intermolecular dynamics, the assembly of hybrid biological and nanoscale materials and the development of molecular electronics. Recent advances in nanotube fabrication and Atomic Force Microscope (AFM) imaging with nanotube tips have demonstrated the potential of these tools to achieve high-resolution images of single molecules. In addition, proof-of-principle demonstrations of nanotube functionalization and attachment of single molecules to these probes have been successfully made.Improved techniques for the growth and attachment of single wall carbon nanotubes as robust and well-characterized tools for AFM imaging are being developed. This work serves as a foundation toward development of single-molecule sensors and manipulators on nanotube AFM tips for a hybrid atomic force microscope that also has single-molecule fluorescence imaging capability. An individual single wall carbon nanotube (SWNT) attached to an AFM tip can function as a structural scaffold for nanoscale device fabrication on a scanning probe. Such a probe can have a novel role, to trigger specific biochemical reactions or conformational changes in a biological system with nanometer precision. The consequences of these perturbations can be read out in real time by single-molecule fluorescence and/or AFM sensing. For example, electrical wiring of single redox enzymes to carbon nanotube scanning probes will allow for observation and electrochemical control of single enzymatic reactions, by monitoring fluorescence from a redox-active cofactor or the formation of fluorescent products. Enzymes “nanowired” to carbon nanotube tips may enable extremely sensitive probing of biological stimulus-response with high spatial resolution, including product-induced signal transduction.


Author(s):  
Janik Schaude ◽  
Maxim Fimushkin ◽  
Tino Hausotte

AbstractThe article presents a redesigned sensor holder for an atomic force microscope (AFM) with an adjustable probe direction, which is integrated into a nano measuring machine (NMM-1). The AFM, consisting of a commercial piezoresistive cantilever operated in closed-loop intermitted contact-mode, is based on two rotational axes, which enable the adjustment of the probe direction to cover a complete hemisphere. The axes greatly enlarge the metrology frame of the measuring system by materials with a comparatively high coefficient of thermal expansion. The AFM is therefore operated within a thermostating housing with a long-term temperature stability of 17 mK. The sensor holder, connecting the rotational axes and the cantilever, inserted one adhesive bond, a soldered connection and a geometrically undefined clamping into the metrology circle, which might also be a source of measurement error. It has therefore been redesigned to a clamped senor holder, which is presented, evaluated and compared to the previous glued sensor holder within this paper. As will be shown, there are no significant differences between the two sensor holders. This leads to the conclusion, that the three aforementioned connections do not deteriorate the measurement precision, significantly. As only a minor portion of the positioning range of the piezoelectric actuator is needed to stimulate the cantilever near its resonance frequency, a high-speed closed-loop control that keeps the cantilever within its operating range using this piezoelectric actuator further on as actuator was implemented and is presented within this article.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 362
Author(s):  
Luke Oduor Otieno ◽  
Bernard Ouma Alunda ◽  
Jaehyun Kim ◽  
Yong Joong Lee

A high-speed atomic force microscope (HS-AFM) requires a specialized set of hardware and software and therefore improving video-rate HS-AFMs for general applications is an ongoing process. To improve the imaging rate of an AFM, all components have to be carefully redesigned since the slowest component determines the overall bandwidth of the instrument. In this work, we present a design of a compact HS-AFM scan-head featuring minimal loading on the Z-scanner. Using a custom-programmed controller and a high-speed lateral scanner, we demonstrate its working by obtaining topographic images of Blu-ray disk data tracks in contact- and tapping-modes. Images acquired using a contact-mode cantilever with a natural frequency of 60 kHz in constant deflection mode show good tracking of topography at 400 Hz. In constant height mode, tracking of topography is demonstrated at rates up to 1.9 kHz for the scan size of 1μm×1μm with 100×100 pixels.


2016 ◽  
Vol 23 (5) ◽  
pp. 1110-1117 ◽  
Author(s):  
M. V. Vitorino ◽  
Y. Fuchs ◽  
T. Dane ◽  
M. S. Rodrigues ◽  
M. Rosenthal ◽  
...  

A compact high-speed X-ray atomic force microscope has been developed forin situuse in normal-incidence X-ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X-ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X-ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized.


2019 ◽  
Vol 30 (2) ◽  
pp. 027002
Author(s):  
Hsien-Shun Liao ◽  
Ka Kit Lei ◽  
Yu Fang Tseng

2016 ◽  
Vol 160 ◽  
pp. 213-224 ◽  
Author(s):  
I. Soltani Bozchalooi ◽  
A. Careaga Houck ◽  
J.M. AlGhamdi ◽  
K. Youcef-Toumi

2011 ◽  
Vol 414 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Hans A. Heus ◽  
Elias M. Puchner ◽  
Aafke J. van Vugt-Jonker ◽  
Julia L. Zimmermann ◽  
Hermann E. Gaub

Sign in / Sign up

Export Citation Format

Share Document