scholarly journals Redesigned Sensor Holder for an Atomic Force Microscope with an Adjustable Probe Direction

Author(s):  
Janik Schaude ◽  
Maxim Fimushkin ◽  
Tino Hausotte

AbstractThe article presents a redesigned sensor holder for an atomic force microscope (AFM) with an adjustable probe direction, which is integrated into a nano measuring machine (NMM-1). The AFM, consisting of a commercial piezoresistive cantilever operated in closed-loop intermitted contact-mode, is based on two rotational axes, which enable the adjustment of the probe direction to cover a complete hemisphere. The axes greatly enlarge the metrology frame of the measuring system by materials with a comparatively high coefficient of thermal expansion. The AFM is therefore operated within a thermostating housing with a long-term temperature stability of 17 mK. The sensor holder, connecting the rotational axes and the cantilever, inserted one adhesive bond, a soldered connection and a geometrically undefined clamping into the metrology circle, which might also be a source of measurement error. It has therefore been redesigned to a clamped senor holder, which is presented, evaluated and compared to the previous glued sensor holder within this paper. As will be shown, there are no significant differences between the two sensor holders. This leads to the conclusion, that the three aforementioned connections do not deteriorate the measurement precision, significantly. As only a minor portion of the positioning range of the piezoelectric actuator is needed to stimulate the cantilever near its resonance frequency, a high-speed closed-loop control that keeps the cantilever within its operating range using this piezoelectric actuator further on as actuator was implemented and is presented within this article.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 362
Author(s):  
Luke Oduor Otieno ◽  
Bernard Ouma Alunda ◽  
Jaehyun Kim ◽  
Yong Joong Lee

A high-speed atomic force microscope (HS-AFM) requires a specialized set of hardware and software and therefore improving video-rate HS-AFMs for general applications is an ongoing process. To improve the imaging rate of an AFM, all components have to be carefully redesigned since the slowest component determines the overall bandwidth of the instrument. In this work, we present a design of a compact HS-AFM scan-head featuring minimal loading on the Z-scanner. Using a custom-programmed controller and a high-speed lateral scanner, we demonstrate its working by obtaining topographic images of Blu-ray disk data tracks in contact- and tapping-modes. Images acquired using a contact-mode cantilever with a natural frequency of 60 kHz in constant deflection mode show good tracking of topography at 400 Hz. In constant height mode, tracking of topography is demonstrated at rates up to 1.9 kHz for the scan size of 1μm×1μm with 100×100 pixels.


Author(s):  
Anthony G. Fowler ◽  
Mohammad Maroufi ◽  
Ali Bazaei ◽  
S. O. Reza Moheimani

This paper presents a new silicon-on-insulator-based MEMS nanopositioner that is designed for high-speed on-chip atomic force microscopy (AFM). The device features four electrostatic actuators in a 2-DOF configuration that allows bidirectional actuation of a central stage along two orthogonal axes with displacements greater than ±10μm. The x- and y-axis resonant modes of the stage are located at 1274Hz and 1286Hz, respectively. Integrated electrothermal sensors are used to control the system in closed loop, with a damping controller and an internal model controller being implemented for each axis. The performance of the closed-loop system is demonstrated by performing a 20μm×20μm contact-mode AFM scan via a Lissajous scan trajectory with a 410Hz sinusoidal reference.


2016 ◽  
Vol 23 (5) ◽  
pp. 1110-1117 ◽  
Author(s):  
M. V. Vitorino ◽  
Y. Fuchs ◽  
T. Dane ◽  
M. S. Rodrigues ◽  
M. Rosenthal ◽  
...  

A compact high-speed X-ray atomic force microscope has been developed forin situuse in normal-incidence X-ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X-ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X-ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized.


2019 ◽  
Vol 30 (2) ◽  
pp. 027002
Author(s):  
Hsien-Shun Liao ◽  
Ka Kit Lei ◽  
Yu Fang Tseng

2016 ◽  
Vol 160 ◽  
pp. 213-224 ◽  
Author(s):  
I. Soltani Bozchalooi ◽  
A. Careaga Houck ◽  
J.M. AlGhamdi ◽  
K. Youcef-Toumi

Machines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 56 ◽  
Author(s):  
Chiu-Keng Lai ◽  
Jhang-Shan Ciou ◽  
Chia-Che Tsai

Owing to the benefits of programmable and parallel processing of field programmable gate arrays (FPGAs), they have been widely used for the realization of digital controllers and motor drive systems. Furthermore, they can be used to integrate several functions as an embedded system. In this paper, based on Matrix Laboratory (Matlab)/Simulink and the FPGA chip, we design and implement a stepper motor drive. Generally, motion control systems driven by a stepper motor can be in open-loop or closed-loop form, and pulse generators are used to generate a series of pulse commands, according to the desired acceleration/run/deceleration, in order to the drive system to rotate the motor. In this paper, the speed and position are designed in closed-loop control, and a vector control strategy is applied to the obtained rotor angle to regulate the phase current of the stepper motor to achieve the performance of operating it in low, medium, and high speed situations. The results of simulations and practical experiments based on the FPGA implemented control system are given to show the performances for wide range speed control.


Author(s):  
Wanfei Ren ◽  
Jinkai Xu ◽  
Zhongxu Lian ◽  
Xiaoqing Sun ◽  
Zheming Xu ◽  
...  

Abstract The fabrication of pure copper microstructures with submicron resolution has found a host of applications such as 5G communications and highly sensitive detection. The tiny and complex features of these structures can enhance device performance during high-frequency operation. However, the easy manufacturing of microstructures is still a challenge. In this paper, we present localized electrochemical deposition micro additive manufacturing (LECD-μAM), combining localized electrochemical deposition (LECD) and closed-loop control of atomic force servo technology, which can print helical springs and hollow tubes very effectively. We further demonstrate an overall model based on pulsed microfluidics from a hollow cantilever LECD process and the closed-loop control of an atomic force servo. The printing state of the micro-helical springs could be assessed by simultaneously detecting the Z-axis displacement and the deflection of the atomic force probe (AFP) cantilever. The results showed that it took 361 s to print a helical spring with a wire length of 320.11 μm at a deposition rate of 0.887 μm/s, which could be changed on the fly by simply tuning the extrusion pressure and the applied voltage. Moreover, the in situ nanoindenter was used to measure the compressive mechanical properties of the helical spring. The shear modulus of the helical spring material was about 60.8 GPa, much higher than that of bulk copper (~44.2 GPa). Additionally, the microscopic morphology and chemical composition of the spring were characterized. These results delineated a new way of fabricating terahertz transmitter components and micro-helical antennas with LECD-μAM technology.


Sign in / Sign up

Export Citation Format

Share Document