Understanding inversion layers and band discontinuities in hydrogenated amorphous silicon/crystalline silicon heterojunctions from the temperature dependence of the capacitance

2013 ◽  
Vol 103 (18) ◽  
pp. 183907 ◽  
Author(s):  
O. Maslova ◽  
A. Brézard-Oudot ◽  
M. E. Gueunier-Farret ◽  
J. Alvarez ◽  
W. Favre ◽  
...  
2014 ◽  
Vol 92 (7/8) ◽  
pp. 690-695 ◽  
Author(s):  
O. Maslova ◽  
A. Brézard-Oudot ◽  
M.E. Gueunier-Farret ◽  
J. Alvarez ◽  
W. Favre ◽  
...  

The temperature dependence of the capacitance–voltage data (C–V–T) of very high efficiency silicon heterojunction solar cells in a wide temperature range, up to 400 K, is analyzed. We show that the temperature dependence of the capacitance exhibits an anomalously large increase with temperature that cannot be explained under the usual depletion approximation. Using the complete analytical calculation of the capacitance, where the contribution of both types of carriers is taken into account, this large increase of capacitance with temperature of p-type hydrogenated amorphous silicon – n-type crystalline silicon ((p) a-Si:H – (n) c-Si) heterojunctions observed experimentally is reproduced. This increase of the capacitance is due to a strong inversion layer at the c-Si surface, which is promoted as the temperature increases. Further we show that the temperature dependence of the 1/C2 versus applied reverse voltage (Va) plot is as well strongly affected by the strong inversion layer at the c-Si surface. Consequently, the intercept of the linear extrapolation of 1/C2 versus Va with the voltage axis (Vint) differs significantly from the total diffusion potential predicted by depletion capacitance theory. These underestimated values of the total diffusion potential can consequently lead to erroneous estimation of the band offsets. The temperature dependence of Vint is considerably enhanced for the case of the full analytical calculation when compared with the depletion approximation approach. These data, obtained directly on the final solar cell device, thus confirm the existence of a surface strong inversion layer that was previously revealed by measurements performed by other techniques on dedicated or precursor devices, allowing one to get information on the band diagram and the heterointerface.


2012 ◽  
Vol 184 ◽  
pp. 416-421 ◽  
Author(s):  
H. Mizubayashi ◽  
I. Sakata ◽  
H. Tanimoto

For hydrogenated amorphous silicon (a-Si:H) films deposited at temperatures between 423 K and 623 K (a-Si:H423Kand so on), the light-induced changes in the internal friction between 80 K and 400 K were studied. The internal friction is associated with H2motion in microvoid networks, and shows the mild temperature dependence between about 80 K and 300 K (Q-180-300K) and the almost linear increase above 300 K (Q-1>300K). BothQ-180-300KandQ-1>300Kdecrease with increasing the deposition temperature, and show the mild temperature dependence ina-Si:H623K. The white light soaking with 100 mW/cm2(WLS100and so on) below 300 K caused a change inQ-180-300Kand no changes inQ-1>300K, respectively, and the light-induced changes inQ-180-300Krecovered after annealing at 423 K. The wide distribution of activation energies for H2motions between microvoids indicate that most of neighboring microvoids are connected through windows, i.e., the microvoid networks are existing ina-Si:H, and the spatially loose or solid structures are responsible for the low or high activation energies for the H2motion between microvoids, respectively. Furthermore, the light-induced hydrogen evolution (LIHE) was observed for WLS200to WLS400in a vacuum between 400 and 500 K, resulting in the disappearance of the internal friction due to the H2motion in the microvoid network.


2011 ◽  
Vol 99 (20) ◽  
pp. 203503 ◽  
Author(s):  
Jan-Willem A. Schüttauf ◽  
Karine H. M. van der Werf ◽  
Inge M. Kielen ◽  
Wilfried G. J. H. M. van Sark ◽  
Jatindra K. Rath ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document