Low-temperature nonlinear effects in the conductivity of lightly doped cuprates La2−xSrxCuO4in antiferromagnetic state

2014 ◽  
Vol 40 (5) ◽  
pp. 397-407 ◽  
Author(s):  
N. V. Dalakova ◽  
B. I. Belevtsev ◽  
E. Yu. Belyaev ◽  
A. S. Panfilov ◽  
N. P. Bobrysheva ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tong Zhu ◽  
Fabio Orlandi ◽  
Pascal Manuel ◽  
Alexandra S. Gibbs ◽  
Weiguo Zhang ◽  
...  

AbstractPreparing materials which simultaneously exhibit spontaneous magnetic and electrical polarisations is challenging as the electronic features which are typically used to stabilise each of these two polarisations in materials are contradictory. Here we show that by performing low-temperature cation-exchange reactions on a hybrid improper ferroelectric material, Li2SrTa2O7, which adopts a polar structure due to a cooperative tilting of its constituent TaO6 octahedra rather than an electronically driven atom displacement, a paramagnetic polar phase, MnSrTa2O7, can be prepared. On cooling below 43 K the Mn2+ centres in MnSrTa2O7 adopt a canted antiferromagnetic state, with a small spontaneous magnetic moment. On further cooling to 38 K there is a further transition in which the size of the ferromagnetic moment increases coincident with a decrease in magnitude of the polar distortion, consistent with a coupling between the two polarisations.


1993 ◽  
Vol 07 (01n03) ◽  
pp. 818-821 ◽  
Author(s):  
D. RAVOT ◽  
O. GOROCHOV ◽  
T. ROISNEL ◽  
G. ANDRE ◽  
F. BOUREE-VIGNERON ◽  
...  

For all the Rare-Earth (R) the R2In form in the same crystal structure (P63/mmc). These compounds show a great variety of magnetic behaviors. When the temperature decreases, the magnetic susceptibility of Er2InTb2In and Gd2In increases, passes through a maximum then decreases. For Gd2In this behavior was associated with change from a paramagnetic to a ferromagnetic then to an antiferromagnetic state. We have performed magnetic, transport (Tb, Er), Mössbauer spectroscopy (Er) and powder neutron diffraction experiments (Gd, Tb, Er) on these compounds. Unlike Gd2In the resistivity of Tb2In and Er2In does not reveal any anomaly at the temperature where the susceptibility begins to decrease and the Tb2In and Er2In magnetizations show the same behavior at all temperatures in the ordered region. Neutron diffraction experiments reveal ferromagnetic and antiferromagnetic structures at low temperature.


1989 ◽  
Vol 146 ◽  
Author(s):  
Jay J. Pelletier ◽  
Thomsa E. Winter

ABSTRACTRapid thermal processing technology is being investigated for many uses such as shallow junction diffusion and implant annealing. Most of these processes are done at temperatures above 700 C. It is desirable to use the rapid thermal processor for some low temperature applications such as hillock reduction because of the systems ability to heat up and cool down almost instantaneously as compared to conventional furnaces. Machine control for low temperature processing is more difficult than high temperature processing dur to the optical pyrometers inability to perform at its lower limit. Well documented nonlinear effects of wafer backside emissivity over a temperature range of 400C to 600C will also contribute to wafer to wafer temperature instability. In order to fully utilize the advantages of rapid thermal processing technology, it is imperative that the RTPs performance and repeatability at low temperatures be understood.This paper will discuss the effect of wafer to wafer backside emissivity differences on wafer temperature for low temperature applications. Typical wafer to wafer backside emissivity variation is presented as well as the measurement error of the Peak “ACE” system. “ACE” (Automatic Compensation for Emissivity) can be used to correct for emissivity differences from wafer to wafer.Effect of improper emissivity selection on actual wafer temperature is presented. Also actual wafer temperature sensitivity to changes in programmed temperature with constant, uncompensated emissivity is demonstrated.Lamp current monitoring is discussed with supporting data to show the ability of it to be used as a day to day monitor of system performance. Also, The effects of lamp problems associated with idle current.


Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


Author(s):  
S. Edith Taylor ◽  
Patrick Echlin ◽  
May McKoon ◽  
Thomas L. Hayes

Low temperature x-ray microanalysis (LTXM) of solid biological materials has been documented for Lemna minor L. root tips. This discussion will be limited to a demonstration of LTXM for measuring relative elemental distributions of P,S,Cl and K species within whole cells of tobacco leaves.Mature Wisconsin-38 tobacco was grown in the greenhouse at the University of California, Berkeley and picked daily from the mid-stalk position (leaf #9). The tissue was excised from the right of the mid rib and rapidly frozen in liquid nitrogen slush. It was then placed into an Amray biochamber and maintained at 103K. Fracture faces of the tissue were prepared and carbon-coated in the biochamber. The prepared sample was transferred from the biochamber to the Amray 1000A SEM equipped with a cold stage to maintain low temperatures at 103K. Analyses were performed using a tungsten source with accelerating voltages of 17.5 to 20 KV and beam currents from 1-2nA.


Author(s):  
P. Echlin ◽  
M. McKoon ◽  
E.S. Taylor ◽  
C.E. Thomas ◽  
K.L. Maloney ◽  
...  

Although sections of frozen salt solutions have been used as standards for x-ray microanalysis, such solutions are less useful when analysed in the bulk form. They are poor thermal and electrical conductors and severe phase separation occurs during the cooling process. Following a suggestion by Whitecross et al we have made up a series of salt solutions containing a small amount of graphite to improve the sample conductivity. In addition, we have incorporated a polymer to ensure the formation of microcrystalline ice and a consequent homogenity of salt dispersion within the frozen matrix. The mixtures have been used to standardize the analytical procedures applied to frozen hydrated bulk specimens based on the peak/background analytical method and to measure the absolute concentration of elements in developing roots.


Author(s):  
Gert Ehrlich

The field ion microscope, devised by Erwin Muller in the 1950's, was the first instrument to depict the structure of surfaces in atomic detail. An FIM image of a (111) plane of tungsten (Fig.l) is typical of what can be done by this microscope: for this small plane, every atom, at a separation of 4.48Å from its neighbors in the plane, is revealed. The image of the plane is highly enlarged, as it is projected on a phosphor screen with a radius of curvature more than a million times that of the sample. Müller achieved the resolution necessary to reveal individual atoms by imaging with ions, accommodated to the object at a low temperature. The ions are created at the sample surface by ionization of an inert image gas (usually helium), present at a low pressure (< 1 mTorr). at fields on the order of 4V/Å.


Author(s):  
William P. Wergin ◽  
Eric F. Erbe ◽  
Eugene L. Vigil

Investigators have long realized the potential advantages of using a low temperature (LT) stage to examine fresh, frozen specimens in a scanning electron microscope (SEM). However, long working distances (W.D.), thick sputter coatings and surface contamination have prevented LTSEM from achieving results comparable to those from TEM freeze etch. To improve results, we recently modified techniques that involve a Hitachi S570 SEM, an Emscope SP2000 Sputter Cryo System and a Denton freeze etch unit. Because investigators have frequently utilized the fractured E face of the plasmalemma of yeast, this tissue was selected as a standard for comparison in the present study.In place of a standard specimen holder, a modified rivet was used to achieve a shorter W.D. (1 to -2 mm) and to gain access to the upper detector. However, the additional height afforded by the rivet, precluded use of the standard shroud on the Emscope specimen transfer device. Consequently, the sample became heavily contaminated (Fig. 1). A removable shroud was devised and used to reduce contamination (Fig. 2), but the specimen lacked clean fractured edges. This result suggested that low vacuum sputter coating was also limiting resolution.


Author(s):  
M. A. Kirk ◽  
M. C. Baker ◽  
B. J. Kestel ◽  
H. W. Weber

It is well known that a number of compound superconductors with the A15 structure undergo a martensite transformation when cooled to the superconducting state. Nb3Sn is one of those compounds that transforms, at least partially, from a cubic to tetragonal structure near 43 K. To our knowledge this transformation in Nb3Sn has not been studied by TEM. In fact, the only low temperature TEM study of an A15 material, V3Si, was performed by Goringe and Valdre over 20 years ago. They found the martensite structure in some foil areas at temperatures between 11 and 29 K, accompanied by faults that consisted of coherent twin boundaries on {110} planes. In pursuing our studies of irradiation defects in superconductors, we are the first to observe by TEM a similar martensite structure in Nb3Sn.Samples of Nb3Sn suitable for TEM studies have been produced by both a liquid solute diffusion reaction and by sputter deposition of thin films.


Sign in / Sign up

Export Citation Format

Share Document