scholarly journals Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells

2015 ◽  
Vol 117 (22) ◽  
pp. 225306 ◽  
Author(s):  
V. Preidel ◽  
D. Amkreutz ◽  
J. Haschke ◽  
M. Wollgarten ◽  
B. Rech ◽  
...  
2015 ◽  
Vol 1734 ◽  
Author(s):  
Kento Nakanishi ◽  
Jun Otsuka ◽  
Masanori Hiratsuka ◽  
Chen Chung Du ◽  
Akira Shirakura ◽  
...  

ABSTRACTDiamond-like carbon (DLC) has widespread attention as a new material for its application to thin film solar cells and other semiconducting devices. DLC can be produced at a lower cost than amorphous silicon, which is utilized for solar cells today. However, the electrical properties of DLC are insufficient for this purpose because of many dangling bonds in DLC. To solve this problem, we investigated the effects of the fluorine incorporation on the structural and electrical properties of DLC.We prepared five kinds of fluorinated DLC (F-DLC) thin film with different amounts of fluorine. Films were deposited by the radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD) method. C6H6 and C6HF5 were used as source gases. The total gas flow rate was constant and the gas flow rate ratio R (=C6H6 / (C6H6 + C6HF5)) was changed from 0 to 1 in 0.25 ratio steps. We also prepared nitrogen doped DLC (F-DLC) on p-Si using N2 gas as a doping gas to form nitrogen doped DLC (F-DLC) / p-Si heterojunction diodes.X-ray photoelectron spectroscopy (XPS) showed that fluorine concentration in the DLC films was controlled. Moreover, the XPS analysis of the C1s spectrum at R=2/4 showed the presence of CF bonding. At R=1, CF2 bonding was observed in addition to CF bonding. The sheet resistivity of the films changed from 3.07×1012 to 4.86×109 Ω. The minimum value was obtained at R=2/4. The current-voltage characteristics indicated that nitrogen doped F-DLC of 2/4 and p-Si heterojunction diode exhibited the best rectification characteristics and its energy conversion efficiency had been maximized. This is because of a decrease of dangling bonds density by ESR analysis and an increase of sp2 structures by Raman analysis. When the fluorine is over certain content, the sheet resistivity increases because chain structures become larger, which is due to the CF2 bonding in F-DLC prevents ring structures. Many C2F4 species were observed and it may become precursors of the chain structure domains, such as (CF2)n.In this study, we revealed effects of fluorine incorporation on DLC and succeeded in increasing its conductivity and improving rectification characteristics of DLC/ p-Si hetero-junction diodes. Our results indicate that DLC fluorination is effective for the semiconducting material, such as solar cell applications.


1989 ◽  
Vol 149 ◽  
Author(s):  
Benjamin F. Fieselmann ◽  
B. Goldstein

ABSTRACTAmorphous SiC p-layers doped with trimethylboron (B(CH3) 3) were prepared with optical and electrical properties superior to those prepared with B2H6. Devices were prepared with efficiencies as high as 11.4% using trimethyl boron. The improved properties of B(CH3)3-doped a-SiC result from the fact that trimethylboron is a more effective doping agent than B2H6 and produces p-layers with a higher bandgap.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Dominik Lausch ◽  
Christian Hagendorf

In this contribution the influence of different types of recombination-active defects on the integral electrical properties of multicrystalline Si solar cells is investigated. Based on a previous classification scheme related to the luminescence behavior of crystal defects, Type-A and Type-B defects are locally distinguished. It is shown that Type-A defects, correlated to iron contaminations, are dominating the efficiency by more than 20% relative through their impact on the short circuit current ISC and open circuit voltage VOC in standard Si material (only limited by recombination active crystal defects). Contrarily, Type-B defects show low influence on the efficiency of 3% relative. The impact of the detrimental Type-A defects on the electrical parameters is studied as a function of the block height. A clear correlation between the area fraction of Type-A defects and both the global Isc and the prebreakdown behavior (reverse current) in voltage regime-2 (−11 V) is observed. An outlier having an increased full-area recombination activity is traced back to dense inter- and intragrain nucleation of Fe precipitates. Based on these results it is concluded that Type-A defects are the most detrimental defects in Si solar cells (having efficiencies > 15%) and have to be prevented by optimized Si material quality and solar cell process conditions.


Sign in / Sign up

Export Citation Format

Share Document